Emotron FlowDrive

Waste water pumping AC drive

Emotron FLD48/52/69, frame sizes B - F/FA/F69 and C2-F2/FA2
0.75-200 kW

Installation \& Getting started instruction

Emotron FlowDrive

Emotron FLD48/52/69, frame sizes B - F/F69 and C2 - F2
0.75-200 kW

Installation \& getting started instruction.
Document number: 01-6142-01
Edition: r2
Date of release: 26-03-2018
© Copyright CG Drives \& Automation Sweden AB 2015-2018
CG Drives \& Automation Sweden AB retains the right to change specifications and illustrations in the text, without prior notification. The contents of this document may not be copied without the explicit permission of CG Drives \& Automation Sweden AB.

Safety Instructions

Congratulations for choosing a product from CG Drives \& Automation!

Before you begin with installation, commissioning or powering up the unit for the first time it is very important that you carefully study this Instruction manual.
Following symbols can appear in this instruction or on the product itself. Always read these first before continuing.

NOTE: Additional information as an aid to avoid problems.

CAUTION!

Failure to follow these instructions can result in malfunction or damage to the AC drive.

Warning!

Failure to follow these instructions can result in serious injury to the user in addition to serious damage to the AC drive.

HOT SURFACE!

Failure to follow these instructions can result in injury to the user.

Handling the AC drive

Installation, commissioning, demounting, taking measurements, etc, of or on the AC drive may only be carried out by personnel technically qualified for the task. A number of national, regional and local regulations govern handling, storage and installation of the equipment. Always observe current rules and legislation.

Opening the AC drive

WARNING!
Always switch off the mains voltage before opening the AC drive and wait at least 7 minutes to allow the capacitors to discharge.

Always take adequate precautions before opening the AC drive. Although the connections for the control signals and the switches are isolated from the main voltage, do not touch the control board when the AC drive is switched on.

Precautions to be taken with a connected motor

If work must be carried out on a connected motor or on the driven machine, the mains voltage must always be
disconnected from the AC drive first. Wait at least minutes before starting work.

Earthing

The AC drive must always be earthed via the mains safety earth connection.

Earth leakage current

CAUTION!

This AC drive has an earth leakage current which does exceed 3.5 mA AC. Therefore the minimum size of the protective earth conductor must comply with the local safety regulations for high leakage current equipment which means that according to the standard IEC61800-5-1 the protective earth connection must be assured by one of following conditions:
PE conductor cross-sectional area shall for phase cable size $\leq 16 \mathbf{~ m m}^{2}$ (6 AWG) be $>10 \mathrm{~mm}^{2}$ $\mathrm{Cu}\left(16 \mathrm{~mm}^{2} \mathrm{Al}\right.$) or use a second PE conductor with same area as original PE conductor. For cable size above $16 \mathrm{~mm}^{2}$ (6 AWG) but smaller or equal to $35 \mathrm{~mm}^{2}(2$ AWG) the PE conductor cross-sectional area shall be at least $16 \mathrm{~mm}^{2}(6$ AWG).
For cables $\mathbf{> 3 5} \mathrm{mm}^{2}$ (2 AWG) the PE conductor cross-sectional area should be at least 50 \% of the used phase conductor.
When the PE conductor in the used cable type is not in accordance with the above mentioned cross-sectional area requirements, a separate PE conductor should be used to establish this.

Residual current device (RCD) compatibility

This product cause a DC current in the protective conductor. Where a residual current device (RCD) is used for protection in case of direct or indirect contact, only a Type B RCD is allowed on the supply side of this product. Use RCD of 300 mA minimum.

EMC Regulations

In order to comply with the EMC Directive, it is absolutely necessary to follow the installation instructions. All installation descriptions in this manual follow the EMC Directive.

Mains voltage selection

The AC drive may be ordered for use with the mains voltage range listed below.
FLD48: 230-480 V
FLD52: 440-525 V
FLD69: 500-690 V

Voltage tests (Megger)

Do not carry out voltage tests (Megger) on the motor, before all the motor cables have been disconnected from the AC drive.

Condensation

If the AC drive is moved from a cold (storage) room to a room where it will be installed, condensation can occur. This can result in sensitive components becoming damp. Do not connect the mains voltage until all visible dampness has evaporated.

Incorrect connection

The AC drive is not protected against incorrect connection of the mains voltage, and in particular against connection of the mains voltage to the motor outlets U, V and W . The AC drive can be damaged in this way.

Power factor capacitors for improving $\cos \varphi$

Remove all capacitors from the motor and the motor outlet.

Precautions during Autoreset

When the automatic reset is active, the motor will restart automatically provided that the cause of the trip has been removed. If necessary take the appropriate precautions.

Transport

To avoid damage, keep the AC drive in its original packaging during transport. This packaging is specially designed to absorb shocks during transport.

IT Mains supply

The AC drives can be modified for an IT mains supply, (non-earthed neutral), please contact your supplier for details.

[^0]
Heat warning

DC-link residual voltage

WARNING!

After switching off the mains supply, dangerous voltage can still be present in the AC drive. When opening the AC drive for installing and/or
commissioning activities wait at least 7 minutes. In case of malfunction a qualified technician should check the DC-link or wait for one hour before dismantling the AC drive for repair.

Contents

Safety Instructions 1
Contents 3

1. Introduction 5
1.1 Using of the instruction manual 5
1.2 Glossary 5
1.3 Warranty 6
2. Mounting 7
2.1 Lifting instructions 7
2.2 Stand-alone units 7
3. Installation 13
3.1 Before installation 13
3.2 Cable connections 14
3.3 Connection of motor and mains cables for larger frame sizes 19
3.4 Cable specifications 20
3.5 Thermal protection on the motor 25
3.6 Motors in parallel 25
4. Control Connections 27
4.1 Control board 27
4.2 Terminal connections 28
4.3 Inputs configuration with the switches 29
4.4 Connect control cables. 29
4.5 Connecting options 36
5. Getting Started 37
5.1 Control panels 37
5.2 Control panel with two lines display 37
5.3 Control panel with four lines display 40
5.4 Basic configuration (all AC drives) 45
5.5 Standalone / Master configuration 46
5.6 Copy to follower 48
5.7 Test run 48
5.8 Engage "Auto Tune" program to optimize energy consumption 49
5.9 Configuration of additional features (optional) 49
6. EMC and standards 51
6.1 EMC standards 51
6.2 Stop categories and emergency stop 51
7. Options 53
7.1 Control panel 53
7.2 Options for the control panel 53
7.3 Handheld Control Panel 2.0 54
7.4 Gland kits 54
7.5 EmoSoftCom 54
7.6 I/O Board 54
7.7 PTC/PT100 54
7.8 RTC- Real time clock board 55
7.9 Serial communication and fieldbus 55
7.10 Standby power supply 55
7.11 Safe Stop option 55
7.12 EMC filter class C1/C2 58
7.13 Output chokes 58
7.14 Liquid cooling 58
7.15 Top cover for IP20/21 version 58
7.16 Other options 58
8. Technical Data 59
8.1 Electrical specifications related to model 59
8.2 General electrical specifications 62
8.3 Operation at higher temperatures 63
8.4 Operation at higher switching frequency.... 63
8.5 Dimensions and Weights 64
8.6 Environmental conditions 65
8.7 Fuses and glands 66
8.8 Control signals 69
9. Menu List 71

1. Introduction

Emotron FlowDrive is an AC drive dedicated for controlling wastewater pumps with focus on continuous pumping with best economy (lowest cost). FlowDrive can operate as a Standalone unit (1 AC drive) or in a Master-Follower configuration (2 AC drives).

Prerequisites

In order to utilize the FlowDrive, following is required:

- Analouge water level sensor for automatic level control, preferably $4-20 \mathrm{~mA}$. Level value can be sent via communication. Level sensor doesn't have to be connected.
- In a Master-Follower configuration a cable between the units is required. For cable specification, see separate "Installation \& Getting started instruction".
- One external switch per AC drive: Auto- Off - Manual run (optional but highly recommended)
- Digital switch for redundant overflow detection (optional)
- 1 pump per AC drive (if dual pumps are used, equal pump performance is required)

Several options are available, listed in Chapter "Options" on page 53, that enable you to customize the AC drive for your specific needs.

Motors

The AC drive is suitable for use with standard 3-phase asynchronous motors. Under certain conditions it is possible to use other types of motors. Contact your supplier for details.

1.1 Using of the instruction manual

Within this instruction manual the abbreviation "AC drive" is used to indicate the complete variable speed drive as a single unit.
With help of the index and the table of contents it is easy to track individual functions and to find out how to use and set them.

1.2 Glossary

1.2.1 Abbreviations and symbols

In this manual the following abbreviations are used:
Table 1 Abbreviations

Abbreviation symbol	Description
AC drive	Variable speed drive
FLD	FlowDrive
IGBT	Insulated Gate Bipolar Transistor
BEP	Best Efficiency Point
RTC	Real Time Clock (option)
CP	Control panel, the programming and presentation unit on the AC drive
HCP	Handheld control panel (option)
EInt	Communication format
Ulnt	Communication format (Unsigned integer)
Int	Communication format (Integer)
Long	Communication format
SCADA	Supervisory Control And Data Acquisition
Q	The function cannot be changed in run mode

1.2.2 Definitions

In this manual the following definitions for current, torque and frequency are used:

Table 2 Definitions

Name	Description	Quantity
$I_{\text {IN }}$	Nominal input current of AC drive	$A_{R M S}$
$I_{\text {NOM }}$	Nominal output current of AC drive	$A_{R M S}$
$I_{\text {MOT }}$	Nominal motor current	$A_{\text {RMS }}$
$\mathrm{P}_{\text {NOM }}$	Nominal power of AC drive	kW
$\mathrm{P}_{\text {MOT }}$	Nominal Motor power	kW
$\mathrm{T}_{\text {NOM }}$	Nominal torque of motor	Nm
$\mathrm{T}_{\text {MOT }}$	Motor torque	Nm
$\mathrm{f}_{\text {OUT }}$	Output frequency of AC drive	Hz
$\mathrm{f}_{\text {MOT }}$	Nominal frequency of motor	Hz
$\mathrm{n}_{\text {MOT }}$	Nominal speed of motor	rpm
$\mathrm{I}_{\text {CL }}$	Maximum output current	$\mathrm{A}_{\text {RMS }}$
Speed	Actual motor speed	rpm
Torque	Actual motor torque	Nm
Sync speed	Synchronous speed of the motor	rpm

1.3 Warranty

The warranty applies when the equipment is installed, operated and maintained according to instructions in this instruction manual. Duration of warranty as per contract. Faults that arise due to faulty installation or operation are not covered by the warranty.

2. Mounting

This chapter describes how to mount the AC drive.
Before mounting it is recommended that the installation is planned out first.

- Be sure that the AC drive suits the mounting location.
- The mounting site must support the weight of the AC drive.
- Will the AC drive continuously withstand vibrations and/or shocks?
- Consider using a vibration damper.
- Check ambient conditions, ratings, required cooling air flow, compatibility of the motor, etc.
- Know how the AC drive will be lifted and transported.

2.1 Lifting instructions

Note: To prevent personal risks and any damage to the unit during lifting, it is advised that the lifting methods described below are used.

Recommended for AC drive models -090 to - 365

Fig. 1 Lifting AC drive model -090 to -295

2.2 Stand-alone units

The AC drive must be mounted in a vertical position against a flat surface. Use the template (in the File archive on our homepage) to mark out the position of the fixing holes.

Fig. 2 AC drive mounting model 003 to 293

2.2.1 Cooling

Fig. 2 shows the minimum free space required around the AC drive for the models 003 to 295 in order to guarantee adequate cooling. Because the fans blow the air from the bottom to the top it is advisable not to position an air inlet immediately above an air outlet.

The following minimum separation between two AC drives, or a AC drive and a non-dissipating wall must be maintained. Valid if free space on opposite side.

Table 3 Mounting and cooling

	Frame size B - F2 [mm(in)]	Frame size C2, D2, E2, F2 with IP21 top cover option [mm(in)]	
FLD - FLD, side-by-side mm (in)	a	$200(7.9)$	$200(7.9)$
	b	$200(7.9)$	$200(7.9)$
	c	0	$50(1.97)$
	d	0	$50(1.97)$
FLD - wall, wall- one side mm (in)	a	$100(3.9)$	$100(3.9)$
	b	$100(3.9)$	$100(3.9)$
	c	0	$50(1.97)$
	d	0	$50(1.97)$

2.2.2 Mounting schemes

Fig. 3 Emotron FLD Model 48/52-003 to 018 (Frame size B)

Fig. 4 Cable interface for mains, motor and communication, Emotron FLD Model 48/52-003 to 018 (Frame size B)

Fig. 5 Emotron FLDModel 48/52-003 to 018 (Frame size B) example with optional CRIO interface and D-sub connectors.

Table 4 Dimensions connected to Fig. 3.

$*$ Frame size	Emotron FLD model	Dimensions in mm (in)							
		A	B	\mathbf{C}	\mathbf{D}	E	F	G	
B	$003-018$	416 (16.4)	396 (15.6)	128.5 (5.04)	37 (1.46)	10 (0.39)	202.6 (7.98)	203 (7.99)	

Fig. 6 Emotron FLD Model 48/52-026 to 046 (Frame size C)

Fig. 7 Cable interface for mains, motor and communication, Emotron FLD Model 48/52-026 to 046 (Frame size C)

Fig. 8 Emotron FLD Model 48-025 to 48-058 (Frame size C2), backside view.

Fig. 9 Bottom view Emotron FLD Model 48-025 to 48-058 (Frame size C2), with cable interface for mains, motor, $D C+/ D C$-, brake resistor and control

Table 5 Dimensions connected to Fig. 6 and Fig. 8.

Frame size	Emotron FLD model	Dimensions in mm (in)										
		A	B	C	D	E	F	G	H	I	J	K
C	026-046	$\begin{gathered} 512 \\ (20.2) \end{gathered}$	$\begin{gathered} 492 \\ (19.4) \end{gathered}$	$\begin{aligned} & 128.5 \\ & (5.04) \end{aligned}$	$\begin{gathered} 24.8 \\ (0.95) \end{gathered}$	$\begin{gathered} 10 \\ (0.39) \end{gathered}$	$\begin{gathered} 178 \\ (7) \end{gathered}$	$\begin{gathered} 292 \\ (11.5) \end{gathered}$	-	-	-	-
C2	025-058	$\begin{gathered} 585.5 \\ (23) \end{gathered}$	$\begin{gathered} 471 \\ (18.5) \end{gathered}$	$\begin{aligned} & 128.5 \\ & (5.04) \end{aligned}$	$\begin{gathered} 23.8 \\ (0.91) \end{gathered}$	$\begin{gathered} 13 \\ (0.51) \end{gathered}$	$\begin{gathered} 167 \\ (7) \end{gathered}$	$\begin{gathered} 267 \text { (10.5) } \\ \text { IP21 } 282(11.1) \end{gathered}$	$\begin{aligned} & 196 \\ & (7.7) \end{aligned}$	$\begin{gathered} 10 \\ (0.39) \end{gathered}$	$\begin{aligned} & 23.5 \\ & (0.9) \end{aligned}$	$\begin{gathered} 496 \\ (19.5) \end{gathered}$

Fig. 10 Emotron FLD Model 48/52-061 and 074 (Frame size D)

Fig. 11 Cable interface for mains, motor and communication, Emotron FLD Model 48/52-061 and 074 (Frame size D).

NOTE: Glands for size B, C and D are available as option kit.

Table 6 Dimensions connected to Fig. 10 and Fig. 12.

$\begin{gathered} \text { Fram } \\ \text { e } \\ \text { size } \end{gathered}$	Emotron FLD model	Dimensions in mm (in)										
		A	B	C	D	E	F	G	H	I	J	K
D	061-074	$\begin{gathered} 570 \\ (22.4) \end{gathered}$	$\begin{gathered} 590 \\ (23.2) \end{gathered}$	$\begin{aligned} & 160 \\ & (6.3) \end{aligned}$	$\begin{gathered} 30 \\ (0.9) \end{gathered}$	$\begin{gathered} 10 \\ (0.39) \end{gathered}$	$\begin{aligned} & 220 \\ & (8.7) \end{aligned}$	$\begin{gathered} 295 \\ (11.6) \end{gathered}$	-	-	-	-
D2	072-088	$\begin{gathered} 570 \\ (22.4) \end{gathered}$	$\begin{aligned} & 669.5 \\ & (26.3) \end{aligned}$	$\begin{aligned} & 160 \\ & (6.3) \end{aligned}$	$\begin{gathered} 30 \\ (0.9) \end{gathered}$	$\begin{gathered} 13 \\ (0.51) \end{gathered}$	$\begin{aligned} & 220 \\ & (8.7) \end{aligned}$	$\begin{gathered} 291 \text { (11.5) } \\ \text { IP21-307 } \\ (12.1) \end{gathered}$	$\begin{aligned} & 240 \\ & (9.5) \end{aligned}$	$\begin{gathered} 10 \\ (0.39) \end{gathered}$	$\begin{gathered} 12.5 \\ (0.47) \end{gathered}$	$\begin{gathered} 590 \\ (23.2) \end{gathered}$

Fig. 14 Emotron FLD Model 48-090 to 175 (Frame size E).

Fig. 15 Cable interface for mains, motor, $D C+/ D C$-, brake resistor and communication, Emotron FLD Model 48-090 to 175 (Frame size E).

Fig. 16 Emotron FLD Model 48-210 to 295 (Frame size F) Emotron FLD Model 69-090 to 200 (Frame size F69).

Fig. 17 Cable interface for mains, motor, $D C+/ D C$-, brake resistor and communication, Emotron FLD Model 48-210 to 295 Emotron FLD Model 69-090 to 200.

Table 7 Dimensions connected to Fig. 14 and Fig. 16.

Frame size	Emotron FLDmodel	Dimension in mm (in)							
		A	B	C	D	E	F	G	H
E	090-175	$\begin{gathered} 925 \\ (36.4) \end{gathered}$	$\begin{aligned} & 952.5 \\ & (37.5) \end{aligned}$	$\begin{aligned} & 240 \\ & (9.5) \end{aligned}$	$\begin{gathered} 22.5 \\ (0.88) \end{gathered}$	10 (0.39)	$\begin{aligned} & 284.5 \\ & (11.2) \end{aligned}$	$\begin{gathered} 314 \\ (12.4) \end{gathered}$	120
F	210-295	$\begin{gathered} 925 \\ (36.4) \end{gathered}$	$\begin{gathered} 950 \\ (37.4) \end{gathered}$	$\begin{gathered} 300 \\ (11.8) \end{gathered}$	$\begin{gathered} 22.5 \\ (0.88) \end{gathered}$	10 (0.39)	$\begin{aligned} & 344.5 \\ & (13.6) \end{aligned}$	$\begin{gathered} 314 \\ (12.4) \end{gathered}$	150
F69	090-200	$\begin{aligned} & 1065 \\ & (41.9) \end{aligned}$	$\begin{aligned} & 1090 \\ & (42.9) \end{aligned}$						

Fig. 18 Emotron FLD Model 48-106 to 48-171 (Frame size E2).

Fig. 19 Bottom view Emotron FLD Model 48-106 to 48-293 (Frame size E2 and F2), with cable interface for mains, motor, $D C+/ D C$-, brake resistor and control. (principle drawing)

Fig. 20 Emotron FLD Model 48-205 to 48-293 (Frame size F2) and 48-365 (Frame size FA and FA2).

Table 8 Dimensions connected to Fig. 18 and Fig. 20.

Frame size	Emotron FLDmodel	Dimension in mm (in)							
		A	B	C	D	E	F	G	H
E2	106-171	$\begin{gathered} 925 \\ (36.4) \end{gathered}$	$\begin{gathered} 950 \\ (37.4) \end{gathered}$	$\begin{aligned} & 240 \\ & (9.5) \end{aligned}$	$\begin{gathered} 22.5 \\ (0.88) \end{gathered}$	$\begin{gathered} 10 \\ (0.39) \end{gathered}$	$\begin{gathered} 275 \\ (10.8) \end{gathered}$	$\begin{gathered} 294(11.6) \\ \text { IP21-323(12.7) } \end{gathered}$	$\begin{aligned} & 120 \\ & (4.7) \end{aligned}$
F2	205-293			$\begin{gathered} 300 \\ (11.8) \end{gathered}$			$\begin{gathered} 335 \\ (13.2) \end{gathered}$	$\begin{gathered} 314(12.4) \\ \text { IP21-323 (12.7) } \end{gathered}$	$\begin{aligned} & 150 \\ & (5.9) \end{aligned}$
FA/FA2	365	$\begin{aligned} & 1065 \\ & (41.9) \end{aligned}$	$\begin{gathered} 1090 \\ (42.9) \end{gathered}$					$\begin{gathered} 306(12) \\ \text { IP21-323(12.7) } \end{gathered}$	

3. Installation

The description of installation in this chapter complies with the EMC standards and the Machine Directive.

Select cable type and screening according to the EMC requirements valid for the environment where the AC drive is installed.

3.1 Before installation

Read the following checklist and prepare for your application before installation.

- Local or remote control.
- Long motor cables ($>100 \mathrm{~m}$ ($>330 \mathrm{ft}$)), refer to section Long motor cables page 19.
- Functions used.
- Suitable AC drive size in proportion to the motor/application.
If the AC drive is temporarily stored before being connected, please check the technical data for environmental conditions. If the AC drive is moved from a cold storage room to the room where it is to be installed, condensation can form on it. Allow the AC drive to become fully acclimatised and wait until any visible condensation has evaporated before connecting the mains voltage.

3.1.1 Remove/open front cover

Frame sizes B - FA(IP54)

Remove/open the front cover to access the cable connections and terminals. On Frame size B and C loosen the 4 screws and remove the cover. On Frame size D and up unlock the hinged cover with the key and open it.
Frame size C2-F2 (IP20/21)

Fig. 21 Remove the front cover on frame size C2-F2 (principle drawing).

To be able to access all cable connections and terminals, first open and remove the front cover in following order.

- Loosen the two screws A (see Fig. 21) at the bottom of the cover a couple of turns (you do not have to remove the screws).
- Swing out the lower part of the cover a bit and remove the cover downwards. Be careful, don't swing out the cover too much as this could damage the "lips" at the upper hinges.
Now it is easy to access all terminals.

3.1.2 Remove/open the lower front cover on Frame size E2, F2 and FA2 (IP20/21)

Fig. 22 Loosen the two screws and remove the lower cover (principle drawing)

In order to access the mains, motor, $\mathrm{DC}+/ \mathrm{DC}-$ and brake terminals, remove the lower cover in following order

- Loosen the two screws B (see Fig. 22).
- Pull down the cover a bit and lift it away.

3.2 Cable connections

IP54-FLD48/52-003 to 074 (Frame sizes B, C and D) IP20/21 - FLD48 025 to 293 (Frame sizes C2,D2,E2 and F2).

3.2.1 Mains cables

Dimension the mains and motor cables according to local regulations. The cable must be able to carry the AC drive load current.

Recommendations for selecting mains cables

- To fulfil EMC purposes it is not necessary to use screened mains cables.
- Use heat-resistant cables, $+75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ or higher.
- Dimension the cables and fuses in accordance with local regulations and the nominal input current of the drive See table 35, page 66.
- PE conductor cross-sectional area shall for cable size $\leq 16 \mathrm{~mm}^{2}$ (6 AWG) be equal to the used phase conductors, for cable size above $16 \mathrm{~mm}^{2}$ (6 AWG) but smaller or equal to $35 \mathrm{~mm}^{2}$ (2 AWG) the PE conductor cross-sectional area shall be at least $16 \mathrm{~mm}^{2}$ (6 AWG). For cables $>35 \mathrm{~mm}^{2}(>2$ AWG) the PE conductor crosssectional area should be at least 50% of the used phase conductor.
When the PE conductor in the used cable type is not in accordance with the above mentioned cross-sectional area requirements, a separate PE conductor should be used to establish this.
- The litz ground connection see fig. 33, is only necessary if the mounting plate is painted. All the AC drives have an unpainted back side and are therefore suitable for mounting on an unpainted mounting plate.

Connect the mains cables according to fig. 23 to 29. The AC drive has as standard a built-in RFI mains filter that complies with category C3 which suits the Second Environment standard.

Fig. 23 Mains and motor connections, model 003-018, frame size B

Fig. 24 Mains and motor connections, model 026-046, frame size C

Fig. 25 Mains and motor connections model 48-025 to 48058, frame size C2.

Fig. 26 Mains and motor connection, model 061-074, frame size D.

Fig. 27 Mains and motor connections model 48-072 to 48-105, frame size D2.

Fig. 28 Mains and motor connections model 48-142 to 48293 (Size E2 and F2) (principle drawing).

Fig. 29 Mains and motor connections model 48-142 to 48293 (Size E2 and F2) with the optional terminals for $D C-, D C+$ and Brake (principle drawing)

Fig. 30 Mains and motor connections model 48-365 (Size FA and FA2) with the optional terminals for $D C-, D C+$ and Brake (principle drawing)

Table 9 Mains and motor connections

L1,L2,L3 PE	Mains supply, 3 -phase Safety earth (protected earth)
$\overline{\bar{U}}, \mathrm{~V}, \mathrm{~W}$	Motor earth Motor output, 3-phase
DC-,DC+,R	Brake resistor, DC-link connections (optional)

Fig. 31 Wiring example showing Protective earth, Motor earth and Brake Resistor connection

NOTE: The Brake and DC-link Terminals are only fitted if the DC+/DC- option or Brake Chopper Option is built-in.

WARNING!

The Brake Resistor must be connected between terminals DC+ and R.

WARNING!

In order to work safely, the mains earth must be connected to PE and the motor earth to \perp.

3.2.2 Motor cables

To comply with the EMC emission standards the AC drive is provided with a RFI mains filter. The motor cables must also be screened and connected on both sides. In this way a so-called "Faraday cage" is created around the AC drive, motor cables and motor. The RFI currents are now fed back to their source (the IGBTs) so the system stays within the emission levels.

Recommendations for selecting motor cables

- Use screened cables according to specification in table 10. Use symmetrical shielded cable; three phase conductors and a concentric or otherwise symmetrically constructed PE conductor, and a shield.
- PE conductor cross-sectional area shall for phase cable size $<16 \mathrm{~mm} 2$ (6 AWG) be $>10 \mathrm{~mm} 2 \mathrm{Cu}(16 \mathrm{~mm} 2 \mathrm{Al})$ or use a second PE conductor with same area as original PE conductor.
For cable size above 16 mm 2 (6 AWG) but smaller or equal to 35 mm 2 ($2 \mathrm{AWG} \mathrm{)} \mathrm{the} \mathrm{PE} \mathrm{conductor} \mathrm{cross-}$ sectional area shall be at least $16 \mathrm{~mm}^{2}$ (6 AWG). For cables $>35 \mathrm{~mm}^{2}$ (2 AWG) the PE conductor crosssectional area should be at least 50% of the used phase conductor.
When the PE conductor in the used cable type is not in accordance with the above mentioned cross-sectional area requirements, a separate PE conductor should be used to establish this.
- Use heat-resistant cables, $+75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ or higher.
- Dimension the cables and fuses in accordance with the nominal output current of the motor. See table 35, page 66.
- Keep the motor cable between AC drive and motor as short as possible.
- The screening must be connected with a large contact surface of preferable 360° and always at both ends, to the motor housing and the AC drive housing. When painted mounting plates are used, do not be afraid to scrape away the paint to obtain as large contact surface as possible at all mounting points for items such as saddles and the bare cable screening. Relying just on the connection made by the screw thread is not sufficient.

NOTE: It is important that the motor housing has the same earth potential as the other parts of the machine.

- The litz ground connection, see fig. 33, is only necessary if the mounting plate is painted. All the AC drives have an unpainted back side and are therefore suitable for mounting on an unpainted mounting plate.

Connect the motor cables according to $\mathrm{U}-\mathrm{U}, \mathrm{V}-\mathrm{V}$ and W - W, see Fig. 23, to Fig. 29 .

NOTE: The terminals DC-, DC+ and R are options.

Switches between the motor and the AC drive

If the motor cables are to be interrupted by maintenance switches, output coils, etc., it is necessary that the screening is continued by using metal housing, metal mounting plates, etc. as shown in the Fig. 33.

Fig. 32 Screen connection of cables.

Pay special attention to the following points:

- If paint must be removed, steps must be taken to prevent subsequent corrosion. Repaint after making connections!
- The fastening of the whole AC drive housing must be electrically connected with the mounting plate over an area which is as large as possible. For this purpose the removal of paint is necessary. An alternative method is to connect the AC drive housing to the mounting plate with as short a length of litz wire as possible.
- Try to avoid interruptions in the screening wherever possible.
- If the AC drive is mounted in a standard cabinet, the internal wiring must comply with the EMC standard. Fig. 33 shows an example of a AC drive built into a cabinet.

Fig. 33 AC drive in a cabinet on a mounting plate
Fig. 34 shows an example when there is no metal mounting plate used (e.g. if IP54 AC drives are used). It is important to keep the "circuit" closed, by using metal housing and cable glands.

Fig. 34 AC drive as stand alone

Connect motor cables

1. Remove the cable interface plate from the AC drive housing.
2. Put the cables through the glands.
3. Strip the cable according to Table 11.
4. Connect the stripped cables to the respective motor terminal.
5. Put the cable interface plate in place and secure with the fixing screws.
6. Tighten the EMC gland with good electrical contact to the motor and brake chopper cable screens.

Placing of motor cables

Keep the motor cables as far away from other cables as possible, especially from control signals. The minimum distance between motor cables and control cables is 300 mm (12 in).

Avoid placing the motor cables in parallel with other cables.
The power cables should cross other cables at an angle of 90°.

Long motor cables

If the connection to the motor is longer than 100 m (330 ft)(for powers below $7.5 \mathrm{~kW}(10.2 \mathrm{hp})$ please contact CG Drives \& Automation), it is possible that capacitive current peaks will cause tripping at overcurrent. Using output coils can prevent this. Contact the supplier for appropriate coils.

Switching in motor cables

Switching in the motor connections is not advisable. In the event that it cannot be avoided (e.g. emergency or maintenance switches) only switch if the current is zero. If this is not done, the AC drive can trip as a result of current peaks.

3.3 Connection of motor and mains cables for larger frame sizes

IP54 - FLD 48-090 to 295 (Frame sizes E - F) and FLD 69-090 to 200 (Frame size F69)

Emotron FLD48-090 and up, Emotron FLD69-090 and up

To simplify the connection of thick motor and mains cables to the AC drive, the cable interface plate can be removed.

Fig. 35 Connecting motor and mains cables.

1. Remove the cable interface plate from the AC drive housing.
2. Put the cables through the glands.
3. Strip the cable according to Table 11.
4. Connect the stripped cables to the respective mains/ motor terminal.
5. Fix the clamps on appropriate place and tighten the cable in the clamp with good electrical contact to the cable screen.
6. Put the cable interface plate in place and secure with the fixing screws.

3.4 Cable specifications

Table 10 Cable specifications

Cable	Cable specification
Mains	Power cable suitable for fixed installation for the voltage used.
Motor	Symmetrical three conductor cable with concentric protection (PE) wire or a four conductor cable with compact low-impedance concentric shield for the voltage used.
Control	Control cable with low-impedance shield, screened.

3.4.1 Stripping lengths

Fig. 3.4.2 indicates the recommended stripping lengths for motor and mains cables.

Fig. 36 Stripping lengths for cables

Table 11 Stripping lengths for mains, motor, brake and earth cables

Model	Frame size	Mains cable		Motor cable			Brake cable			Earth cable	
		$\begin{gathered} \mathrm{a} \\ \mathrm{~mm} \end{gathered}$ (in)	$\begin{gathered} \mathrm{b} \\ \mathrm{~mm} \end{gathered}$ (in)	$\begin{gathered} \mathrm{a} \\ \mathrm{~mm} \\ \text { (in) } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{~mm} \end{gathered}$ (in)	$\begin{gathered} c \\ \mathrm{~mm} \\ \text { (in) } \end{gathered}$	$\begin{gathered} \mathrm{a} \\ \mathrm{~mm} \\ \text { (in) } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{~mm} \end{gathered}$ (in)	$\underset{\text { (in) }}{\stackrel{c}{c}}$	$\begin{gathered} \mathrm{a} \\ \mathrm{~mm} \end{gathered}$ (in)	$\stackrel{\mathrm{b}}{\mathrm{~mm}} \text { (in) }$
FLD\#\#003-018	B	$\begin{gathered} \hline 90 \\ (3.5) \end{gathered}$	10 (0.4)	$\begin{gathered} \hline 90 \\ (3.5) \end{gathered}$	$\begin{gathered} \hline 10 \\ (0.4) \end{gathered}$	$\begin{gathered} \hline 20 \\ (0.8) \end{gathered}$	$\begin{gathered} \hline 90 \\ (3.5) \end{gathered}$	$\begin{gathered} \hline 10 \\ (0.4) \end{gathered}$	$\begin{gathered} \hline 20 \\ (0.8) \end{gathered}$	$\begin{gathered} \hline 90 \\ (3.5) \end{gathered}$	10 (0.4)
FLD\#\#026-046	C	$\begin{aligned} & 150 \\ & (5.9) \end{aligned}$	14 (0.2)	$\begin{aligned} & 150 \\ & (5.9) \end{aligned}$	$\begin{gathered} \hline 14 \\ (0.2) \end{gathered}$	$\begin{gathered} 20 \\ (0.8) \end{gathered}$	$\begin{aligned} & 150 \\ & (5.9) \end{aligned}$	$\begin{gathered} 14 \\ (0.2) \end{gathered}$	$\begin{gathered} 20 \\ (0.8) \end{gathered}$	$\begin{aligned} & 150 \\ & (5.9) \end{aligned}$	14 (0.2)
FLD48-025-058	C2	$\begin{gathered} \hline 65 \\ (2.7) \end{gathered}$	18 (0.7)	$\begin{gathered} \hline 65 \\ (2.7) \end{gathered}$	$\begin{gathered} 18 \\ (0.7) \end{gathered}$	$\begin{gathered} \hline 36 \\ (1.4) \end{gathered}$	$\begin{gathered} \hline 65 \\ (2.7) \end{gathered}$	$\begin{gathered} 18 \\ (0.7) \end{gathered}$	$\begin{gathered} \hline 36 \\ (1.4) \end{gathered}$	$\begin{gathered} \hline 65 \\ (2.7) \end{gathered}$	M6 screw*
FLD\#\#061-074	D	$\begin{aligned} & \hline 110 \\ & (4.3) \end{aligned}$	17 (0.7)	$\begin{aligned} & \hline 110 \\ & (4.3) \end{aligned}$	$\begin{gathered} \hline 17 \\ (0.7) \end{gathered}$	$\begin{gathered} \hline 34 \\ (1.4) \end{gathered}$	$\begin{aligned} & \hline 110 \\ & (4.3) \end{aligned}$	$\begin{gathered} \hline 17 \\ (0.7) \end{gathered}$	$\begin{gathered} \hline 34 \\ (1.4) \end{gathered}$	$\begin{aligned} & \hline 110 \\ & (4.3) \end{aligned}$	17 (0.7)
FLD48-072-105	D2	$\begin{gathered} \hline 92 \\ (3.6) \end{gathered}$	18 (0.7)	$\begin{gathered} \hline 92 \\ (3.6) \end{gathered}$	$\begin{gathered} \hline 18 \\ (0.7) \end{gathered}$	$\begin{gathered} \hline 36 \\ (1.4) \end{gathered}$	$\begin{gathered} \hline 92 \\ (3.6) \end{gathered}$	$\begin{gathered} \hline 18 \\ (0.7) \end{gathered}$	$\begin{gathered} \hline 36 \\ (1.4) \end{gathered}$	$\begin{gathered} \hline 92 \\ (3.6) \end{gathered}$	M6 screw*
FLD\#\#090-175	E	$\begin{aligned} & 173 \\ & (6.8) \end{aligned}$	25 (1)	$\begin{aligned} & 173 \\ & (6.8) \end{aligned}$	25 (1)	$\begin{gathered} 41 \\ (1.6) \end{gathered}$	$\begin{aligned} & 173 \\ & (6.8) \end{aligned}$	25 (1)	41	173	25 (1)
FLD48-142-171	E2								(1.6)	(6.8)	40 (1.6)**
FLD48-205-293	F2	178 (7)	32 (1.3)	178 (7)	$\begin{gathered} 32 \\ (1.3) \end{gathered}$	$\begin{gathered} 46 \\ (1.8) \end{gathered}$	178 (7)		$\begin{gathered} 46 \\ (1.8) \end{gathered}$	178 (7)	$\begin{gathered} 32(1.3) \\ 40(1.6)^{\star *} \end{gathered}$
$\begin{array}{\|l\|} \hline \text { FLD48-210 - } 295 \\ \text { FLD69-090 - } 200 \end{array}$	F										

* With cable shoe
**Valid when brake chopper electronics are built in

Fig. 37 indicates the distance from the cable clamp to the connection bolts for decision of stripping lengths for the cables.

Fig. 37 Distances from the cable clamp to the connection bolts.
Table 12 Distances from the cable clamp to the connection bolts for mains, motor, brake and earth cables for frame sizes FA to FA2

Model	Frame size	Mains cable		Motor cable		Brake cable		Earth cable	
		$\begin{gathered} \text { B } \\ \text { (in) } \end{gathered}$	Bolt dimension	$\underset{\text { (in) }}{\underset{\text { mm }}{\text { (in }}}$	Bolt dimension	$\underset{\substack{\mathrm{mm} \\ \text { (in) }}}{\text { C }}$	Bolt dimension	$\begin{gathered} \mathrm{A} \\ \mathrm{~mm} \end{gathered}$ (in)	Bolt dimension
FLD48-365-54	FA	$\begin{gathered} 375 \\ (14.8) \end{gathered}$	M10 bolt*	$\begin{gathered} 375 \\ (14.8) \end{gathered}$	M10 bolt	$\begin{gathered} 420 \\ (16.5) \end{gathered}$	M8 bolt*	$\begin{aligned} & 110 \\ & (4.3) \end{aligned}$	M8 bolt*
FLD48-365-20	FA2								

*) Connect with cable shoes

3.4.2 Fuse data

Please refer to the chapter Technical data, section 8.7, page 66.

3.4.3 Cable connection data for mains, motor and PE cables according to IEC ratings

NOTE: The dimensions of the power terminals used in the cabinet drive models 300 to 3 KO can differ depending on customer specification.

Table 13 Cable connector range and tightening torque for Emotron FLD48 and FLD52, according to IEC ratings.

Table 13 Cable connector range and tightening torque for Emotron FLD48 and FLD52, according to IEC ratings.

Model	Frame size	Cable cross section connector range						Cable type
		Mains and motor		Brake		PE		
		Cable area mm^{2}	Tightening torque Nm	Cable area mm^{2}	Tightening torque Nm	Cable area mm^{2}	Tightening torque Nm	
FLD48-205-20	F2	25-240	$\begin{gathered} 31(\text { (for } \\ \left.25-34 \mathrm{~mm}^{2}\right) \\ 42(\text { for } \\ \left.35-152 \mathrm{~mm}^{2}\right) \\ 56 \text { (for } \\ \left.153-240 \mathrm{~mm}^{2}\right) \end{gathered}$	16-150	$\begin{gathered} 31 \text { (for } \\ 16-34 \mathrm{~mm}^{2} \text {) } \\ 42 \text { (for } \\ 35-150 \\ \mathrm{~mm}^{2} \text {) } \end{gathered}$	$\begin{aligned} & 25-240 \\ & 16-185 \text { ** } \end{aligned}$	$\begin{gathered} 31 \text { (for } \\ 25-34 \mathrm{~mm}^{2} \text {) } \end{gathered}$	
FLD48-210-54	F						42 (for	$75^{\circ} \mathrm{C}$
FLD48-228-54							35-152 mm)	
FLD48-250-54								
FLD48-295-54							$\begin{gathered} \left.153-240 \mathrm{~mm}^{2}\right) \\ 10 * * \end{gathered}$	***
FLD48-365-54	FA	M10 connection	47	M8 connection	24	M8 connection	24	$\begin{gathered} \text { Copper (Cu) } \\ 75^{\circ} \mathrm{C} \end{gathered}$
FLD48-365-20	FA2							

* = With cable shoe for M6 screw.
** = Valid when brake chopper electronics are built in.
${ }^{* * *}=$ Use $90^{\circ} \mathrm{C}$ Mains and motor cables if surrounding temperature is higher than $35^{\circ} \mathrm{C}$ otherwise $75^{\circ} \mathrm{C}$ cables.

Table 14 Cable connector range and tightening torque for Emotron FLD69, according to IEC ratings.

Model	Frame size	Cable cross section connector range						Cable type
		Mains and motor		Brake		PE		
		Cable area mm^{2}	Tightening torque Nm	Cable area mm^{2}	Tightening torque Nm	Cable area mm^{2}	Tightening torque Nm	
FLD69-090-54	F69	16-150	$\begin{gathered} 31 \text { (for } \\ 16-34 \mathrm{~mm}^{2} \text {) } \\ 42(\text { for } \\ 35-150 \mathrm{~mm}^{2} \text {) } \end{gathered}$	16-120	$\begin{gathered} 31 \text { (for } \\ 16-34 \mathrm{~mm}^{2} \text {) } \\ 42(\text { for } \\ 35-120 \mathrm{~mm}^{2} \text {) } \end{gathered}$	$\begin{aligned} & 16-150 \\ & 16-185^{* *} \end{aligned}$	$\begin{gathered} 31 \text { (for } \\ 16-34 \mathrm{~mm}^{2} \text {) } \\ 42(\text { for } \\ 35-150 \mathrm{~mm}^{2} \text {) } \end{gathered}$	Copper (Cu) $75^{\circ} \mathrm{C}$
FLD69-109-54								
FLD69-146-54								
FLD69-175-54								
FLD69-200-54								
							10 **	

[^1]
3.4.4 Cable connection data for mains, motor and PE cables according to NEMA ratings

List of cable cross section connector range with minimum required AWG cable cross section which fits to the terminals according to UL-requirements.

Table 15 Cable connector range and tightening torque for Emotron FLD48 and FLD52, according to NEMA ratings

* = With cable shoe for M6 screw.
${ }^{* *}=$ Valid when brake chopper electronics are built in.
${ }^{* * *}=$ Use $90^{\circ} \mathrm{C}$ Mains and motor cables if surrounding temperature is higher than $35^{\circ} \mathrm{C}$ otherwise $75^{\circ} \mathrm{C}$ cables.

3.5 Thermal protection on the motor

Standard motors are normally fitted with an internal fan. The cooling capacity of this built-in fan is dependent on the frequency of the motor. At low frequency, the cooling capacity will be insufficient for nominal loads. Please contact the motor supplier for the cooling characteristics of the motor at lower frequency.

WARNING!

Depending on the cooling characteristics of the motor, the application, the speed and the load, it may be necessary to use forced cooling on the motor.

Motor thermistors offer better thermal protection for the motor. Depending on the type of motor thermistor fitted, the optional PTC input may be used. The motor thermistor gives a thermal protection independent of the speed of the motor, thus of the speed of the motor fan. See the functions, Motor $I^{2} t$ type [231] and Motor $I^{2} t$ current [232].

3.6 Motors in parallel

t is possible to have motors in parallel as long as the total current does not exceed the nominal value of the AC drive. The following has to be taken into account when setting the motor data:

Menu [221] Motor Voltage:	The motors in parallel must have the same motor voltage.
Menu [222] Motor Fre- quency:	The motors in parallel must have the same motor frequency.
Menu [223] Motor Power:	Add the motor power values for the motors in parallel.
Menu [224] Motor Current:	Add the current for the motors in parallel.
Menu [225] Motor Speed:	Set the average speed for the motors in parallel.
Menu [227] Motor Cos PHI:	Set the average Cos PHI value for the motors in parallel.

4. Control Connections

4.1 Control board

Fig. 38 shows the layout of the control board which is where the parts most important to the user are located. Although the control board is galvanically isolated from the mains, for safety reasons do not make changes while the mains supply is on!

WARNING!
Always switch off the mains voltage and wait at least 7 minutes to allow the DC capacitors to discharge before connecting the control signals or changing position of any switches. If the option External supply is used, switch of the mains to the option. This is done to prevent damage on the control board.

Fig. 38 Control board layout

4.2 Terminal connections

The terminal strip for connecting the control signals is accessible after opening the front panel.

The table describes the default functions for the signals. The inputs and outputs are programmable for other functions as described in the separate Software instruction. For signal specifications refer to chapter 8 . page 59.

NOTE: The maximum total combined current for outputs 11,20 and 21 is 100 mA .

NOTE: It is possible to use external 24V DC if connection to Common (15).

Table 16 Control signals

Terminal	Name	Function (Default)
Outputs		
1	+10 V	+10 VDC supply voltage
6	-10 V	
7	Common	Signal ground
11	+24 V	+24 VDC supply voltage
12	Common	
15	Common	
Digital inputs		
8	Digln 1	Flow ManRun (Forced run)
9	Digln 2	Flow AutoRun (Auto run)
10	Digln 3	FlowLinkln
16	Digln 4	Off
17	Digln 5	Off
18	Digln 6	Overflow level switch (optional)
19	Digln 7	Off
22	Digln 8	Reset
Digital outputs		
20	DigOut 1	
21	DigOut 2	FlowLinkOut
Analogue inputs		
2	Anln 1	Level sensor
3	Anln 2	Off
4	Anln 3	Off
5	Anln 4	Off
Analogue outputs		
13	AnOut 1	
14	AnOut 2	

Table 16 Control signals

$\left.$| Terminal | Name | Function (Default) |
| :--- | :--- | :--- |
| Relay outputs | | |
| 31 | N/C 1 | Relay 1 output
 Trip, active when the AC drive is
 in a TRIP condition. |
| 32 | COM 1 | |
| 33 | N/O 1 | N/C 2 | | Relay 2 output |
| :--- |
| Run, active when the AC drive is |
| started, also active during sleep |
| mode. | \right\rvert\, | 41 | COM 2 |
| :--- | :--- | :--- |

NOTE: N/C is opened when the relay is active and N/ O is closed when the relay is active.

NOTE! Using potentiometer for reference signal to Analogue input: Possible potentiometer value in range of $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega(1 / 4 \mathrm{Watt})$ linear, where we advice to use a linear $1 \mathrm{k} \Omega / 1 / 4 \mathrm{~W}$ type potentiometer for best control linearity.

WARNING!

The relay terminals 31-52 are single isolated. Do NOT mix SELV voltage with e.g. 230 VAC on these terminals. A solution when dealing with mixed SELV/system voltage signals is to install an additional I/ O board option (see chapter 7.6 page 54) and connect all SELV voltage signals to the relay terminals of this option board while connecting all 230 VAC signals to the control board relay terminals 31-52.

4.3 Inputs configuration with the switches

The switches S1 to S4 are used to set the input configuration for the 4 analogue inputs AnIn1, AnIn2, AnIn3 and AnIn4 as described in table 17. See Fig. 38 for the location of the switches.

Table 17 Switch settings

Input	Signal type	Switch
Anln1	Voltage	S1 $\quad \square$
	Current (default)	
AnIn2	Voltage	S2 $\quad \square$
	Current (default)	$\text { S2 } \quad \square$
AnIn3	Voltage	S3 $\quad \square$
	Current (default)	$\text { S3 } \quad \square$
AnIn4	Voltage	S4 $\quad \square$
	Current (default)	$\text { S4 } \quad \square \quad \cup$

NOTE: Scaling and offset of AnIn1 - Anln4 can be configured using the software. See menus [512], [515], [518] and [51B] in the separate Software instruction.

NOTE: the 2 analogue outputs AnOut 1 and AnOut 2 can be configured using the software. See menu [530] in the separate Software instruction.

4.4 Connect control cables

Here you will make up the minimum wiring for starting. To comply with the EMC standard, use screened control cables with plaited flexible wire up to 1.5 mm 2 (AWG15) or solid wire up to 2.5 mm 2 (AWG13). We recommend using twisted pair cables between Master and follower for communication signals.

1. Connect a level sensor between terminals 1 (+10 VDC) and 2 (AnIn 1) as in Fig. 40 The default setting for the AnIn 1 is $4-20 \mathrm{~mA}$. If the level sensor has a $0-10 \mathrm{~V}$ interface, change the position of switch (S1) on control board (Table 17).
2. Connect an external Full speed switch between terminal 11 (+24 VDC) and 8 (DigIn1, Flow Run) as in Fig. 40. Set the switch in the open position (digital input set to low state). (Do not activate the signal at this point.)
3. Connect an external Auto run switch between terminal 11 (+24 VDC) and 9 (DigIn2, Flow Auto) as in Fig. 40. Set the switch in the open position (digital input set to low state). (Do not activate the signal at this point.)
4. Connect a communication cable between Master terminal 10 (DigIn3) and Follower terminal 21 (DigOut2) as in Fig. 40. (Only if Master/Follower).
5. Connect a communication cable between Master terminal 21 (DigOut2) and Follower terminal 10 (DigIn3) as in Fig. 40. (Only if Master/Follower).
6. Connect an overflow level switch (optional) between terminal 11 (+24 VDC) and 18 (DigIn6, Lvl Overflow) as in Fig. 40 Connect the signal to the Follower drive instead in a Master-Follower configuration for redundancy.

Single pump or two pump configuration

Emotron FlowDrive can work in three different modes:

- Stand alone - One single pump
- Master - Main unit in a two pump configuration
- Follower - Second pump in a two pump configuration

Fig. 39 Stand alone and Master/Follower configuration.
See next page for wiring examples of the different configurations.

4.4.1 Minimum wiring examples

Fig. 40 General control I/O, minimum wiring.
Table 18 Terminals and description of functions.

Stand alone / Master			Follower			
Terminal	Name	Description	Terminal	Name	Function	Menu
Analogue inputs						
2	Anln 1	Level sensor				511
Outputs						
1	+10V	+10V DC supply voltage				
7	0 VDC	Common	7	0 VDC	Common	
11	+24V	+24V DC supply voltage	11	+24V	+24V DC supply voltage	
Digital inputs						
8	Digln 1	Flow ManRun (Forced run)	8	Digln 1	Flow ManRun (Forced run)	522
9	Digln 2	Flow AutoRun (Auto run)	9	Digln 2	Flow AutoRun (Auto run)	521
10	Digln 3	FlowLinkln (Follower feedback)	10	Digln 3	FlowLinkIn (Follower control)	523
18	Digln 6	Overflow level switch (optional)	18	Digln 6	Overflow level switch (optional)	526
22	Digln 8	Reset	22	Digln 8	Reset	528
Digital outputs						
21	DigOut 2	FlowLinkOut (Follower control)	21	DigOut 2	FlowLinkOut (Follower feedback)	542

4.4.2 Full wiring examples

FlowDrive Stand alone

Fig. 41 FlowDrive standalone full wiring examples.

Pos. $\mathbf{N r}$	Function	Terminal	Description	Menu	Default setting	Customer setting
1	Level sensor	2	Anln 1	511	Level sensor	
2	Flow sensor	4	Anln 3	517	Off	Flow sensor
3	Auto/Off/Manual switch	8	Digln 1	521	Flow ManRun	
		9	Digln 2	522	Flow AutoRun	
4	Personal protection switch	16	Digln 4	524	Off	PP Timer
5	Autoreset enabling	22	Digln 8	528	Reset	
6	Personal protection alarm	20	DigOut 1	541	Ready	PP alarm
7	Trip relay output	$32-33$	Relay 1	551	Trip	
8	Operation relay output	$42-43$	Relay 2	552	Run	
9	Personal protection prealarm	$51-52$	Relay 3	553	Off	PP PreAlarm

FlowDrive Master / Follower

Fig. 42 FlowDrive Masterlfollower full wiring example.

Pos. Nr	Function	Unit	Terminal	Description	Menu	Default setting	Customer setting
1	Level sensor	Master	2	Anln 1	511	Level sensor	
2	Flow sensor	Master	4	Anln 3	517	Off	Flow sensor
3	Auto/Off/Manual switch - Master	Master	8	Digln 1	521	Flow ManRun	
		Master	9	Digln 2	522	Flow AutoRun	
4	Personal protection switch	Master	16	Digln 4	524	Off	PP Timer
5	Autoreset enabling	Master	22	Digln 8	528	Reset	
6	Personal protection alarm	Master	20	DigOut 1	541	Ready	PP Alarm
7	Master/Follower communication	Master	21	DigOut 2	542	FlowLinkOut	
		Follower	10	Digln 3	523	FlowLinkln	
8	Trip relay output	Master	32-33	Relay 1	551	Trip	
9	Operation relay output	Master	42-43	Relay 2	552	Run	
10	Personal protection prealarm	Master	51-52	Relay 3	553	Off	PP PreAlarm
11	Auto/Off/Manual switch Follower	Follower	8	Digln 1	521	FlowManRun	
		Follower	9	Digln 2	522	FlowAutoRun	
12	Overflow level switch	Master \& Follower	18	Digln 6	526	Lvl Overflow	
13	Autoreset enabling	Follower	22	Digln 8	528	Reset	
14	Master/Follower communication	Follower	21	DigOut 2	542	FlowLinkOut	
		Master	10	Digln 3	523	FlowLinkln	
15	Trip relay output	Follower	32-33	Relay 1	551	Trip	
16	Operation relayoutput	Follower	42-43	Relay 2	552	Run	
17	Common, signal ground	Master	12	0 VDC			
		Follower	7				

4.4.3 Connecting the Control Signal cables

The standard control signal connections are suitable for stranded flexible wire up to $1.5 \mathrm{~mm}^{2}$ (AWG16) and for solid wire up to $2.5 \mathrm{~mm}^{2}$ (AWG14).

NOTE: The screening of control signal cables must comply with the immunity levels given in the EMC Directive (reduction of noise level).

NOTE: The control cables must be separated from motor and mains cables.

Table 19 Description of optional terminals in fig. 43 to fig. 47.

Terminals 78, 79	For connection of Motor PTC
Terminals A-, B+	For connection of 24V Stand-by Sup- ply (only valid for sizes D \& D2)

Fig. 43 Connecting the control signals, FLD model 003 to 018, frame size B.

Fig. 44 Connecting the control signals, FLD model 026 to 046, frame size C.

Fig. 45 Connecting the control signals, FLD model 48-025 to 48-058 frame size C2.

Fig. 46 Connecting the control signals, FLD model 061 to 074, frame size D.

Fig. 47 Connecting the control signals, FLD model 48-072 to 48-105 frame size D2.

Fig. 48 Connecting the control signals, FLD model 48-090 to 295 and FLD model 69-90 to 200, frame size E, F, FA and F69 (principle drawing).

Fig. 49 Connecting the control signals, FLD model 48-142 to 48-365 frame size E2, F2 and FA2 (principle drawing)

NOTE: The screening of control signal cables is necessary to comply with the immunity levels given in the EMC Directive (it reduces the noise level).

NOTE: Control cables must be separated from motor and mains cables.

4.4.4 Types of control signals

Always make a distinction between the different types of signals. Because the different types of signals can adversely affect each other, use a separate cable for each type. This is often more practical because, for example, the cable from a pressure sensor may be connected directly to the AC drive.
We can distinguish between the following types of control signals:

Analogue inputs

Voltage or current signals, ($0-10 \mathrm{~V}, 0 / 4-20 \mathrm{~mA}$) normally used as control signals for speed, torque and PID feedback signals.

Analogue outputs

Voltage or current signals, ($0-10 \mathrm{~V}, 0 / 4-20 \mathrm{~mA}$) which change slowly or only occasionally in value. In general, these are control or measurement signals.

Digital

Voltage or current signals ($0-10 \mathrm{~V}, 0-24 \mathrm{~V}, 0 / 4-20 \mathrm{~mA}$) which can have only two values (high or low) and only occasionally change in value.

Data

Usually voltage signals ($0-5 \mathrm{~V}, 0-10 \mathrm{~V}$) which change rapidly and at a high frequency, generally data signals such as RS232, RS485, Profibus, etc.

Relay

Relay contacts (0-250 VAC) can switch highly inductive loads (auxiliary relay, lamp, valve, brake, etc.).

Signal type	Maximum wire size	Tightenin g torque	Cable type
Analogue	Rigid cable: $0.14-2.5 \mathrm{~mm}^{2}$ (AWG 26-14) Flexible cable: $0.14-1.5 \mathrm{~mm}^{2}$ (AWG 26-16) Cable with ferrule: $0.25-1.5 \mathrm{~mm}^{2}$ (AWG 24-16)	$\begin{aligned} & 0.5 \mathrm{Nm} \\ & \text { (4.4 LB-in) } \end{aligned}$	Screened
Digital			Screened
Data			Screened
Relay			Not screened

Example:

The relay output from a AC drive which controls an auxiliary relay can, at the moment of switching, form a source of interference (emission) for a measurement signal from, for example, a pressure sensor. Therefore it is advised to separate wiring and screening to reduce disturbances.

4.4.5 Screening

For all signal cables the best results are obtained if the screening is connected to both ends: the AC drive side and at the source (e.g. PLC, or computer). See Fig. 50.
It is strongly recommended that the signal cables be allowed to cross mains and motor cables at a 90° angle. Do not let the signal cable go in parallel with the mains and motor cable.

4.4.6 Single-ended or double-ended connection?

In principle, the same measures applied to motor cables must be applied to all control signal cables, in accordance with the EMC-Directives.

For all signal cables as mentioned in section 4.4.4 the best results are obtained if the screening is connected to both ends. See Fig. 50.

NOTE: Each installation must be examined carefully before applying the proper EMC measurements.

Fig. 50 Electro Magnetic (EM) screening of control signal cables.

4.4.7 Current signals ((0)4-20 mA)

A current signal like (0) $4-20 \mathrm{~mA}$ is less sensitive to disturbances than a $0-10 \mathrm{~V}$ signal, because it is connected to an input which has a lower impedance (250Ω) than a voltage signal ($20 \mathrm{k} \Omega$). It is therefore strongly advised to use current control signals if the cables are longer than a few metres.

4.4.8 Twisted cables

Analogue and digital signals are less sensitive to interference if the cables carrying them are "twisted". This is certainly to be recommended if screening cannot be used. By twisting the wires the exposed areas are minimised. This means that in the current circuit for any possible High Frequency (HF) interference fields, no voltage can be induced. For a PLC it is therefore important that the return wire remains in proximity to the signal wire. It is important that the pair of wires is fully twisted over 360°.

4.5 Connecting options

The option cards are connected by the optional connectors X4 or X5 on the control board see Fig. 38, page 27 and mounted above the control board. The inputs and outputs of the option cards are connected in the same way as other control signals.

5. Getting Started

This chapter is a step by step guide that will show you the quickest way to get the pumps running.
We assume that:

- the AC drive is mounted on a wall or in a cabinet as in the chapter 2 . page 7 .
- mains and motor cables are connected according to chapter 3.3 page 19 .
- control cables are connected according to chapter 4.4 page 29.
FlowDrive can operate as a Standalone unit (1 AC drive) or in a Master-Follower configuration (2 AC drives).

Sections

Chapter 5.2 and Chapter 5.3-Describes how to use the control panel.

Chapter 5.4-Covers basic configuration like language and motor parameters for all drives.

Chapter 5.5 - Describes configuration of Standalone/Master drive.

Chapter 5.5.3 to Chapter 5.5.6 - Describes configuration of level control parameters related to the pump sump.

Chapter 5.7 - Describes how to start up the system and make sure everything is correctly configured.

Chapter 5.8 - Run the Auto Tune program.
Chapter 5.9-Configuration of additional features.

5.1 Control panels

The control panel displays the status of the AC drive and is used to set all the parameters.

NOTE: The AC drive can run without the control panel being connected.

5.1.1 Different control panels

There are different control panels available for Emotron FlowDrive.

Contol panel with Two lines LCD display

available for Emotron FlowDrive - IP54 and IP2X versions. See chapter "Control panel with two lines display" on page 37

Contol panel with Four lines LCD display

available for Emotron FlowDrive - IP54 and IP2X versions. See chapter "Control panel with four lines display" on page 40

5.2 Control panel with two lines display

Emotron FlowDrive - IP54 and IP2X versions, has a control panel with a two line display and buttons according to Fig. 51.

Fig. 51 Control panel for IP54 and IP2X versions with display, LEDs and Keys.

5.2.1 The display

The display is back lit and consists of 2 rows, each with space for 16 characters. The display is divided into six areas. The different areas in the display are described below:

Fig. 52 The display
Area A: Shows the actual menu number (3 or 4 digits).

Area B Shows if the menu is in the toggle loop or the AC drive is set for Local operation.
Area C: Shows the heading of the active menu.
Area D^{*} : Shows the status of the AC drive (3 digits). The following status indications are possible:

Digits	Description	Bit *
Stp	Motor is stopped	0
Run	Motor runs	1
Acc	Acceleration	2
Dec	Deceleration	3
Trp	Tripped	4
SST	Operating Safe Stop, is flashing when activated	5
VL	Operating at voltage limit	6
SL	Operating at speed limit	7
CL	Operating at current limit	8
TL	Operating at torque limit	9
OT	Operating at temperature limit	10
I $^{2 t}$	Active ${ }^{2}$ t protection	11
LV	Operating at low voltage	12
Sby	Operating from Standby power supply	13
LCL	Operating with low cooling liquid level	14
SIp	Sleep mode	15
SPS	Spin start active	16

${ }^{*}$) The status shown in Area D on the control panel can be read via a fieldbus or serial communication, e.g. using Modbus address nr 30053.
It is also possible to read all status indications, not just the highest prioritized one, via a fieldbus or serial communication, e.g. using Modbus address nr 30889 and 30891. This information is also shown in EmoSoftCom PC-tool (optional) see menu "Area D stat [72C]".

Area E: Shows active parameter set and if it is a motor parameter.

Area F: Shows the setting or selection in the active menu. This area is empty at the 1 st level and 2 nd level menu. This area also shows warnings and trip messages. In some situations this area could indicate "+++" or " - - -" please see further information in Chapter 5.2.2 page 38

Fig. 56 Example 4th level menu

5.2.2 Indications on the display

The display can indicate " +++ " or "- - - " if a parameter is out of range. In the AC drive there are parameters which are dependent on other parameters. For example, if the speed reference is 500 and the maximum speed value is set to a value below 500 , this will be indicated with " +++ " on the display. If the minimum speed value is set over 500, "- - -" is displayed.

5.2.3 LED indicators

The symbols on the control panel have the following functions:

Fig. 57 LED indications
Table 20 LED indication

Symbol	Function		
	ON	FLASHING	OFF
POWER (green)	Power on	-------------	Power off
TRIP (red)	AC drive tripped	Warning/Limit	No warning or trip
RUN (green)	Motor shaft rotates	Motor speed increase/ decrease	Motor stopped

Fig. 53 Example 1st level menu

220 Motor Data Stp \boldsymbol{A}

Fig. 54 Example 2nd level menu

221 Motor Volt	
Stp \mathbf{A} M1:	400 V

Fig. 55 Example 3d level menu

5.2.4 Control keys

In FlowDrive mode only the Stop/Reset button is used to reset the AC drive after a trip.
As default the RUN L and RUN R keys are disabled and set to "Flow control" in menus "Ref Control [214]" and "Run/ Stop Control [215]".

Table 21 Control keys

	RUN L:	gives a start with left rotation. Not used in FlowDrive
STOP/RESET:	Resets the AC drive after a trip	
	RUN R:	gives a start with right rotation. Not used in FlowDrive

5.2.5 The Toggle and Loc/Rem Key

This key has two functions: Toggle and switching between Loc/Rem function. In FlowDrive mode the Loc/Rem function is disabled.

Press one second to use the toggle function. When editing values, the toggle key can be used to change the sign of the value, see further in the Software instruction.

Toggle function

Using the toggle function makes it possible to easily step through selected menus in a loop. The toggle loop can contain a maximum of ten menus. As default the toggle loop contains the menus needed for Quick Setup. You can use the toggle loop to create a quick-menu for the parameters that are most importance to your specific application.

Add a menu to the toggle loop

1. Go to the menu you want to add to the loop.
2. Press the Toggle key and keep it pressed while pressing the + key.

Delete a menu from the toggle loop

1. Go to the menu you want to delete using the toggle key.
2. Press the Toggle key and keep it pressed while pressing the - key.

Delete all menus from the toggle loop

1. Press the Toggle key and keep it pressed while pressing the Esc key.
2. Confirm with Enter.

Default toggle loop

Fig. 58 shows the default toggle loop. This loop contains the necessary menus that need to be set before starting. Example:

To access submenus to menu [221], press Toggle to enter menu [221] then use the Next key to enter the sub menus [222] to [22H] and enter the parameters. When you press the Toggle key again, menu [3A11] is displayed.

Fig. 58 Toggle loop example.

5.2.6 Function keys

The function keys operate the menus and are also used for programming and read-outs of all the menu settings.

Table 22 Function keys

$\underset{\text { ENTER }}{1}$	ENTER key:	- step to a lower menu level - confirm a changed setting
$\underset{\mathrm{ESC}}{\boldsymbol{1}}$	ESCAPE key:	- step to a higher menu level - ignore a changed setting, without confirming
$\underset{\text { PREV }}{\sim}$	PREVIOUS key:	- step to a previous menu within the same level - go to more significant digit in edit mode
$\xrightarrow[\text { NEXT }]{\longrightarrow}$	NEXT key:	- step to a next menu within the same level - go to less significant digit in edit mode
	- key:	- decrease a value - change a selection
F	+ key:	- increase a value - change a selection
	TOGGLE and LOC/REM key:	- Toggle between menus in the toggle loop - Switching between local and remote control - Change the sign of a value

5.3 Control panel with four lines display

Emotron FlowDrive - IP54 and IP2X have a control panel with a four lines display according to Fig. 59.
This control panel is equipped with real time clock function. This means that actual date and time will be shown at e.g. a trip condition.
There is also an optional four lines Control panel with Bluetooth communication available. See chapter"Options" on page 53 for more information.

Fig. 59 Control panel with 4 lines display, LEDs and Keys.

5.3.1 The display

The display is back lit and consists of 4 rows, each with space for 20 characters. The display is divided into following areas. The different areas in the display are described below:

Fig. 60 The display
Area A: Shows the actual menu number (3 or 4 digits).

Area B: Menu name or heading (Except in menus $100+$ mode), 8 characters field.

Area C: Edit Cursor if editing or heading in menu[100], 8 characters field.

Area D^{*} : Shows the status of the AC drive (3 digits).
The following status indications are possible:

Digits	Description	Bit *
Stp	Motor is stopped	0
Run	Motor runs	1
Acc	Acceleration	2
Dec	Deceleration	3
Trp	Tripped	4
SST	Operating Safe Stop, is flashing when activated	5
VL	Operating at voltage limit	6
SL	Operating at speed limit	7
CL	Operating at current limit	8
TL	Operating at torque limit	9
OT	Operating at temperature limit	10
I $^{2} \mathrm{t}$	Active It protection	11
LV	Operating at low voltage	12
Sby	Operating from Standby power supply	13
LCL	Operating with low cooling liquid level	14
SIp	Sleep mode	15
SPS	Spin start active	16

*) The status shown in Area D on the control panel can be read via a fieldbus or serial communication, e.g. using Modbus address nr 30053.
It is also possible to read all status indications, not just the highest prioritized one, via a fieldbus or serial communication, e.g. using Modbus address nr 30180 and 30182. This information is also shown in EmoSoftCom PCtool (optional) see menu "Area D stat [72B]".Area I:Active Motor set M1 - M2 (Set in menu [212]).

Area E: Shows active parameter set: \boldsymbol{A} or \mathbf{B} [241].
Area F: Master mode

$$
\text { (} 0=\text { =Off, } M=\text { Manual, } \mathrm{A}=\text { Auto, } \mathrm{X}=\text { Illegal }) .
$$

Area G Master frequency (in Hz)
Area H Follower mode ($0=$ Off, $M=$ Manual, $\mathrm{A}=$ Auto, $\mathrm{X}=\mathrm{Ill}$ egal).

Area I Follower frequency (in Hz)

Area J Active control source

Digits	Description
OFF	Flowdrive level control not activated
SBY	Standby (Pump not running)
FLU	Flushing (flushing pipes)
RUN	Pump running
MAX	Full speed
PUC	Pump clean
BEP	BEP running (performing a BEP run)
LMM	Load monitor measurement
SUC	Sump clean
PIC	Pipe clean

Area K: Parameter value, shows the setting or selection in the active menu, 12 characters field.
This area is empty at the 1 st level and 2 nd level menu. This area also shows warnings and alarm messages. In some situations this area could indicate "+++" or " - - " see further information in the Instruction manual.

Area L: \quad Signal values shown in menu [100], 12 characters field.

Area M: Preferred read-out value (chosen in menu [110])
Area N Shows if the menu is in the toggle loop and/or the AC drive is set for Local operation.
$\boldsymbol{T}=$ in Toggle loop
$\boldsymbol{T} \boldsymbol{T}=$ in Local operation and Toggle loop
$\mathbf{I}=$ Local operation

NOTE:
In area B and area C only 8 characters are available, this means that some texts will be shortened.

Menu [100] Preferred view

This menu is displayed at every power-up. During
operation, the menu [100] will automatically be displayed when the keyboard is not operated for 5 minutes.
Menu "[100] Preferred View" displays the settings made in menu "[110], 1st line", "[120], 2nd line" and "[130], 3rd line".

100 T	2.500 m	
Frequency	50 Hz	
Current	12.3 A	
Run \mathbf{A}	[A 50 A 50]_RUN	First line - set in Menu[110].
		Second line - set in Menu[120]

Extended signal monitoring

If you hold the
 key when in menu [100] following window will appear, as long as the key is pressed. Here First, Second and Third line are shown as selected in menu [100]. Then additional information will be displayed, selected in the menus [140], [150] and [160] according to below.

Use menu "[170] View mode" to select active type of menu [100] presentation, select if "Normal 100" or "Allways $100+$ " Extended signal monitoring" shall be shown at power-up. A third choice is menu "Normal[100]wo" = menu [100] without explaining text at second and third line.

5.3.2 Editing mode

All other menus (read and read/write menus) are used in following way

| 221 T |
| :--- | :--- | :--- |
| Motor Volts |
| M1 |\quad| Shows Menu number to the left and to the right signal selected |
| :--- |
| in menu [110]. |

During editing, preferred view will not be displayed and the cursor will appear blinking to the left. See also below.

5.3.3 Fault logger

As real-time clock is available, line 2 will show trip/warning message and line three will show date and time when the trip condition occurred.

810 T	2.500m
Ext trip	
2017-01-25	12:34.40
Run \mathbf{A}	[A 50 A 50]_RUN

5．3．4 Real Time clock

In this 4 lines Control panel（PPU）there is a built in Real time clock．This means that actual date and time will be shown at e．g．a trip condition．There is a built capacitor to be able to keep the clock running if the power disappear． Actual date and time will be set from factory．Date and time is shown and can be set in following menus．

Clock［930］

This menu group displays actual time and date，read only． Time and date are factory set to CET（Central European mean time）．Adjust if required in following sub－menus．

930 田		2.500 m
Clock		
2017－01－23	12：34．40	
Run 图	［A 50	A

Time［931］
Actual time，displayed as HH：MM：SS．Adjustable setting．

931 目	2.500 m
Time	$12: 34.40$
Run	［A 50 A 50］＿RUN

\square

Actual date，displayed as YYYY－MM－DD．Adjustable setting．＇

932 目	2.500 m
Date	$2017-01-23$
Run \boldsymbol{A}	［A 50 A 50］＿RUN

Unit：\quad YYYY－MM－DD（year－month－day）

Weekday［933］

Display of actual weekday，read only．

933 田	2.500 m
Weekday	Monday
Run 图	［A 50 A 50］＿RUN

hh：mm：ss（hours：minutes：seconds）

Date［932］

，［A SOA SD］＿RN

5．3．5 LED indicators

The symbols on the control panel have the following
functions：

Fig． 61 LED indications
Table 23 LED indication

Symbol	Function		
	ON	FLASHING	OFF
POWER （green）	Power on	-------------	Power off
TRIP （red）	AC drive tripped	Warning／Limit	No warning or trip
RUN （green）	Motor shaft rotates	Motor speed increase／ decrease	Motor stopped

5.3.6 Function keys

The function keys operate the menus and are also used for programming and read-outs of all the menu settings.
step to lower menu level or confirm
changed setting

5.3.7 Using the function keys

Fig. 62 Example of menu navigation when entering motor voltage

Example:

Setting Motor data.
Menu [100], "Preferred View" is displayed when started.

1. Press to display menu [200], "Main Setup".
2. Press $£$ and then - to display menu [220], "Motor Data".
3. Press \doteq to display menu [221] and set motor voltage.
4. Change the value using the \oplus and \leftrightarrows keys. Confirm with ϱ.

5.3.8 Toggle loop

Fig. 63 Default toggle loop
To ease commissioning there is a pre-programmed default toggle loop that can be used to jump between the parameters described in this guide. Often other settings adjacent to these entry points should also be configured.

- [211] Language - Select language and supply voltage
- [3A11] Drive Conf .- Configuration of AC drive (Standalone/Master/Follower)
- [221] Motor Volts - Motor configuration
- [341] Min speed - Speed configuration
- [3C13] Sensor min - Level sensor configuration
- [3A21] Overflow - Configurations of levels (where to start, stop pumping)
- [3A31] Level 1 - Reservoir configuration
- [3A14] RunTimeOFsw - Run time after overflow switch
- [21F] CopyToFLW - Copy to follower
- [7411] Sump level - Inspect values and test operation

5.4 Basic configuration (all AC drives)

The FlowDrive can work in two drive modes; WasteWater and Generic drive mode. In WasteWater mode the AC drive is configured for reservoir level control and in Generic drive mode it behaves like a normal Emotron FDU drive. By default the AC drive is configured in WasteWater mode and the remaining quick start guide describes how to configure this mode.
In case you are interested in running the FlowDrive as a Generic drive, change parameter "[21D] Drive appl." to "Generic" and consult the instruction manual for FDU in the download area (file archive) on www.emotron.com. Please note that there is a slight difference in the menu layout and some parameters have changed fieldbus addresses.

5.4.1 Switch on the mains

Once the mains is switched on, the internal fan in the AC drive will run for 5 seconds (In frame size A3 the fan runs continuously). The control panel is lighted up and the AC drive can be configured.
To change settings use the keys on the control panel or remote access program such as EmoSoftCom. For further information about the control panel, EmoSoftCom and menu structure, see the software instruction

5.4.2 Language and supply voltage

Menu [100], "Preferred View" is displayed when started.

1. Navigate to menu [211] or press toggle button once and you will jump directly to menu [211]. "[211] Language" - Set preferred language.
2. Now navigate to "Mains supply voltage [21B]" and set supply voltage according to the actual drive supply voltage used.

5.4.3 Set FlowDrive configuration

In FlowDrive WasteWater mode the AC drive can operate as a Standalone unit (using one AC drive) or in a MasterFollower configuration (using two AC drives). Select the configuration that fits your setup:

Standalone configuration

1. Navigate to menu "[3A11] FLD Config" or press toggle button once more and you will jump directly to menu [3A11].
2. Verify that "FLD Config" is configured to "Standalone" (factory default). If not change it to "Standalone".
3. Continue with " 5.5 Standalone / Master configuration".

Master-Follower configuration

1. On the follower unit navigate to menu "[3A11] FLD Config" or press toggle button once more and you will jump directly to menu [3A11].
2. Set "FLD Config" to "Follower".

This concludes the setup for the Follower unit! Continue with configuration of Master unit below and then copy common parameters as outlined later in this guide. NOTE: Setting the parameter to "Follower" will cause a warning (blinking red triangle on PPU). Warning is "P2 Comm Err", can be seen in menu [722], and occurs because there is no configured Master unit to communicate with yet.
3. On the Master unit navigate to menu "[3A11] FLD Config" or press toggle button once more and you will jump directly to menu [3A11].
4. Set "FLD Config" to "Master".
5. Make sure that there are no warnings/errors (triangle on PPU should not blink nor be lit) on either Master or Follower.
6. Continue with "3.3 Standalone / Master configuration"

5.5 Standalone / Master configuration

NOTE: "5.4 Basic configuration (all AC drives)" should be done before entering here.

5.5.1 Set the Motor Data

Navigate to menu [221] or press toggle button once and you will jump directly to menu [221].
Enter correct motor data for the connected motor. Change settings using the keys on the control panel. For further information about the control panel and menu structure, see the software instruction.

1. Set motor voltage [221].
2. Set motor frequency [222].
3. Set motor power [223].
4. Set motor current [224].
5. Set motor speed [225].
6. Set power factor $(\cos \varphi)$ [227].
```
Note: User with 60 Hz motors must change the values in menus:
"Flush speed [3B12]" \&
"Rev speed [3B34]" from 50 to 60 Hz .
```


5.5.2 Minimum frequency

Navigate to "[341] Min frequency" or press toggle button again to set the minimum allowed frequency.

[341] Min frequency

Minimum frequency is by default set to nominal motor frequency and must be changed by the user. Generally 70\% of nominal motor frequency is a good value to start with. I.e. 35 Hz in case nominal motor frequency is 50 Hz . This is low enough to be able to find the best efficiency point and high enough to ensure that the pump generates a sufficient flow. Adjust upwards if the default value is considered to be too low for keeping up with normal inflow.

5.5.3 Level sensor configuration

The level sensor connected to the standalone or master unit needs to be configured based on its type and placement. Navigate to menu [3C13] or press the toggle button.

1. "[3C13] Sensor min"

This is configuration of which level, in meters, the min analogue signal from the sensor should represent. Generally this is 0 for a pressure sensor placed in the bottom of the sump. Press \bigoplus to continue.
2. "[3C14] Sensor max"

This is configuration of which level, in meters, the max analogue signal from the sensor represents. This data is
dependent on the sensor but often sensors with a range of 5 or 10 meters is used.

See also Fig. 64, page 47.
Regarding more advanced functions please refer to the separate Software instruction manual

5.5.4 Set sump levels

Set the desired levels for actions to be taken (starting and stopping of the pumps), see Fig. 64, page 47.
Navigate to menu [3A21] or press the toggle button again and set following.

1. "[3A21] Overflow " Level where the overflow alarm is triggered. Press \ominus to continue.
2. "[3A221 Start level" Level where the pump is started. Press Θ to continue.
3. "[3A231 Stop level" Level where the pump is stopped. Press - to continue.
4. "[3A27] Full speed" Level where all available pumps are started, running at full speed. Press Θ to continue.

Note: Overflow level has to be higher than Start level which has to be higher than Stop level. Full speed level should be between overflow and start level. In general, the overflow level shall be set somewhat below the Overflow switch (If installed) see Fig. 64.

5.5.5 Set reservoir geometry

The reservoir geometry settings are crucial for the Auto Tune program and flow estimations. Enter values as precisely as possible, failing to do so will result in inaccurate measurements.
Navigate to menu "[3A31] Level 1" or press toggle button.
Start from the bottom level (level 1) and set a corresponding area for each change of shape in the reservoir. Remember to deduct the area of the pumps if this area is large enough to affect the flow estimations.

It is possible to use 5 levels and areas. Use as many as required, unused levels/areas should be set to 0/Off. Last level defined is extrapolated, hence in a uniformed sump only one level/area is required.
Level 1 [3A31]
Area 1 [3A32]
Level 2 [3A33]
Area 2 [3A34]
Level 3 [3A35]
Level 4 [3A37]
Area 3 [3A36]
Level 5 [3A39]
Area 4 [3A38]
Area 5 [3A3A]

Fig. 64 Sump areas and levels, examples.

Example with round reservoir:
Level $=\mathrm{X}$ m,
Area $=\pi \mathrm{r}^{2}$
Level $1=0 \mathrm{~m}$
Area $1=$ Radius is 0.60 m , area 1 is calculated:
$\pi 0.60^{2}=1.13 \mathrm{~m}^{2}$
Level $2=0.50 \mathrm{~m}$,
Area $2=$ Radius is 0.60 m , area 2 is calculated: $\pi 0.60^{2}=1.13 \mathrm{~m}^{2}$

Level $3=0.60 \mathrm{~m}$
Area $3=$ Radius 0.90 m , area 3 is calculated: $\pi 0.90^{2}=2.54 \mathrm{~m}^{2}$

Example with rectangular reservoir:

Level= X m,
Area $=A \times B m^{2}$
Level 1: 0 m
Area 1: $\mathrm{A}=1.20 \mathrm{~m}, \mathrm{~B}=0.50 \mathrm{~m}$, area 1 is calculated: $1.20 \times 0.50=0.60 \mathrm{~m}^{2}$

Level $2=0.50 \mathrm{~m}$,
Area 2 : $A=1.20 \mathrm{~m}, \mathrm{~B}=0.50 \mathrm{~m}$, area 2 is calculated: $1.20 \times 0.50=0.60 \mathrm{~m}^{2}$
Level $3=0.60 \mathrm{~m}$
Area 3: $\mathrm{A}=1.80 \mathrm{~m}, \mathrm{~B}=0.50 \mathrm{~m}$, area 3 is calculated: $1.80 \times 0.50=0.90 \mathrm{~m}^{2}$

Examples of reservoir shapes and levels

Following are examples of different reservoir shapes and levels required.

Fig. 65 With a uniform shape, only one level larea is required as the area is the same.

Fig. 66 With this shape, 4 levels and areas are required.

5.5.6 Overflow level switch runtime

If there is an overflow level switch connected to digital in on either Master or Follower unit (not to mix up with "[3A21] Overflow" level) consider changing the minimum run time in menu "[3A14] RnTimeOFsw" when switch is activated. Default is 0 minutes implying only run when activated.
[3A14] RunTimeOFsw
Number of minutes to run after overflow switch is activated.

5.6 Copy to follower

In case of a Master and Follower system it is now time to copy parameters to the follower. On a "Standalone" system skip this part.
Navigate to menu "[21F] CopyToFlw" or press the toggle button.

1. Make sure the drives are in stopped mode.
2. Set to "Copy" and press Enter.
3. Verify that "Done" emerge after a while.

5.7 Test run

Now the configuration is finished; time to test that everything works as expected.

Sump level

Sump level is shown in menu "[7411] Sump level" (and by default as first row in [100] menu).

Navigate to menu "[7411] Sump level" or press toggle button and make sure the current sump water level displayed corresponds to actual level in the sump.

Auto/Off/Manual switches

Make sure the external Auto/Off/Manual switches are set in correct position and connected correctly as described in chapter 4.3 page 29.

1. Set both switches in "Off" position.
2. Go to menu "[746] Pump mode" on the Master AC drive. In this menu the mode for the switches are shown.
3. Make sure "Off" is shown for both switches in this menu.
In case not "Off" is shown for both switches, make sure the switches are in correct position and connected correctly. Also inspect the configuration in menu "[52X] DigIn X " where X is the digital input number.
4. Turn the Auto/Off/Manual switch to Manual for one of the pumps. The corresponding pump should start and "[746] Pump mode" should change to "Manual" for the corresponding pump (the other pump should stay in "Off" state). Test both pumps. Switch both switches back to "Off".
5. Change both switches to Auto.
6. "[746] Pump mode" should change to "Auto" mode.

Verify "Auto mode" operation

In "Auto" pump mode the pump should start when "[7411] Sump level" has reached "[7412] ActStartLll" (that should be same as configured "[3A22] Start level" unless "[3B2] Start lvl Δ " is configured). Monitor how the pump decreases the level and eventually comes to a stop when "[7411] Sump level" goes below "[3A23] Stop level".

5.8 Engage "Auto Tune" program to optimize energy consumption

When concluded that the FlowDrive appears to be running correctly in Auto mode as described earlier, the "Auto Tune" program can be started. It is designed to measure reference outflows and find the best efficiency point. In addition the Auto Tune program can configure the load monitor enabling detection of obstructed pumps.

Load monitor

- Auto Tune program starts with measuring the normal load at different frequencies.
It is possible to deselect the Load monitoring in menu "[3A42] LoadMonTune" if you for some reason need to repeat the BEP calculation.

Start Auto Tune program

The Auto Tune program will do a lot of measurements and will take several hours, up to days, to complete. If pump cleaning is allowed the program will start with cleaning the pumps, making sure pumps are cleaned before taking measurements. Then the program continues with load monitor tuning if enabled and finally run the flow and efficiency measurements. During flow and efficiency measurements the FlowDrive will use a narrow start/stop interval located slightly below the normal start level.

The AutoTune program will do "[3A43] BEP samples" of measurements at each frequency. However, if a sample measurement is considered faulty (e.g. when inflow is changed a lot or is too high) that measurement will be discharged and redone. The progress of the AutoTune program can be seen in menu "[752] BEP progress" as a percentage. When successfully finalized "[751] BEP State" will show "Finished". Under certain conditions (too many faulty measurements in a row) the AutoTune program will be aborted. In that case menu "[751] BEP State" will show "Aborted" and abort reason can then be seen in "[7531]AbortReason".

After completion, or if aborted, the AC drive will automatically jump into normal running mode.

- Navigate to menu [3A41].
"[3A41] Start Auto T" - Set to "Start" to initiate the Auto Tune program

The progress can be seen in menu "[752] BEP progress" as a percentage. When finished the result can be seen in the following parameters:
"[349] BEP Speed" - The frequency where it is most efficient to pump at.
"[94X] Flow $\log 1 \mathrm{P}$ " - Log of outflow and energy data for one pump at different frequencies.
"[95X] Flow $\log 2 \mathrm{P}$ " - Log of flows and energy data for two pumps at different frequencies.
"[41CX] Load Curve" - If load monitor was configured load data at different frequencies can be found here .

5.9 Configuration of additional features (optional)

Here is an overview of some of the additional features built into the FlowDrive, More detailed information can be found in the Software instruction

5.9.1 Flush start

Function to always ramp up to full speed to get sludge and sediment moving. Flushing time and frequency can be configured in [3B1X] menus. By default this feature is turned on.

5.9.2 Random start level

To avoid building up residues at start level on the sump wall, it is possible to randomize where the pumps are started. By default randomized start level is turned off.

Activate this function by setting start level in "[3B2]Start lvl \triangle ", by default this is set to off.
"[3B2] Start lvl Δ "- Set the desired variation in meters.

Example

Start level is set to: 1.5 meters
Start lvl Δ is set to: 0.4 m
Actual start level will then be randomized between 1.1 m 1.5 m .

5.9.3 Pump cleaning

Pump cleaning runs the pump in a specific pattern in both forward and reverse direction to clean the pump from rugs and dirt buildup. By default this feature is turned off since not all pumps can operate in reverse direction.

NOTE: Pump cleaning will reverse the pumps. Check with the pump manufacturer that the connected pump can operate in the reverse direction.
"[3B31] Act.PumpCln"
Set to 'Yes' to allow pump cleaning.
"[3B36] CleanTorque"
Set maximum allowed clean torque. Often there will be a need for some additional torque when cleaning compared to normal run conditions.

5.9.4 Sump cleaning

This function helps getting rid of accumulated residues in the pump sump. Pump sump cleaning empties the pump sump by running the selected pump(s) below the normal stop level until slurping air. Detection of when to stop is based on the decrease in load when starting to slurping air.

NOTE 1: Running pumps below their normal stop level might cause the pump to overheat.

NOTE 2: Problems might emerge from sucking air into the pump/pipes in some installations (generally dry setups).

NOTE 3: The load drop percentage ([3B43] Off Torque Δ), i.e. when to stop, must be configured and tested for optimal functionality.

5.9.5 Pipe cleaning

Pipe cleaning function produce maximum flow for as long time as possible to clean the pipes from loose residues. Pipe cleaning can be activated at any time and will be performed as soon as the start level is reached.

6. EMC and standards

6.1 EMC standards

The AC drive complies with the following standards:
EN(IEC)61800-3:2004 Adjustable speed electronic power drive systems, part 3, EMC product standards:
Standard: category C3, for systems of rated supply voltage < 1000 VAC, intended for use in the second environment.
Optional: Category C2 for systems of rated supply voltage $<1.000 \mathrm{~V}$, which is neither a plug in device nor a movable device and, when used in the first environment, is intended to be installed and commissioned only by experienced person with the necessary skills in installing and/or commissioning AC drives including their EMC aspects.

6.2 Stop categories and emergency stop

The following information is important if emergency stop circuits are used or needed in the installation where a AC drive is used. EN 60204-1 defines 3 stop categories:

Category 0: Uncontrolled STOP:

Stopping by switching off the supply voltage. A mechanical stop must be activated. This STOP may not be implemented with the help of a AC drive or its input/output signals.

Category 1: Controlled STOP:

Stopping until the motor has come to rest, after which the mains supply is switched off. This STOP may not be implemented with the help of a AC drive or its input/output signals.

Category 2: Controlled STOP:

Stopping while the supply voltage is still present. This STOP can be implemented with each of the AC drives STOP command.

WARNING!

EN 60204-1 specifies that every machine must be provided with a category 0 stop. If the application prevents this from being implemented, this must be explicitly stated. Furthermore, every machine must be provided with an Emergency Stop function. This emergency stop must ensure that the voltage at the machine contacts, which could be dangerous, is removed as quickly as possible, without resulting in any other danger. In such an Emergency Stop situation, a category 0 or 1 stop may be used. The choice will be decided on the basis of the possible risks to the machine.

NOTE: With option Safe Stop, a "Safe Torque Off (STO)" stop according EN-IEC 62061:2005 SIL 3 \& EN-ISO 13849-1:2006, can be achieved.
See Chapter 12.7 page 184

7. Options

The standard options available are described here briefly. Some of the options have their own instruction or installation manual. For more information please contact your supplier. See also in "Technical catalogue AC drives" for more info.

7.1 Control panel

Control panel with a 4-lines display.

Part number		Description
IP54	IP20/21	
01-6520-00	01-6521-00	4 lines Control panel including real time clock-RTC
$01-6520-01$	$01-6521-01$	4 lines Control panel including real time clock-RTC and Bluetooth

Fig. 67 Control panel with 4 lines display.
This control panel has four lines display. The display is back lit and consists of 4 rows, each with space for 20 characters. The Control panel is equipped with real time clock function. This means that actual date and time will be shown at e.g. a trip condition.
There is also an optional Control panel with Bluetooth communication available for connection with cellphone or tablet.

NOTE: The 4-lines Control panel requires software 1.20 or later.

7.2 Options for the control panel

Part number	Description
01-3957-00	Panel kit complete including 2-lines panel
01-3957-01	Panel kit complete including blank panel
Contact CG	Panel kit complete including 4-lines panel Panel kit complete including 4-lines panel with Bluetooth \mathbf{l}

Mounting cassette, blank panel and straight RS232-cable are available as options for the control panel. These options may be useful, for example for mounting a control panel in a cabinet door.

Fig. 68 Control panel in mounting cassette

7.3 Handheld Control Panel
 2.0

Part number	Description
01-5039-00	Handheld Control Panel 2.0 complete for FlowDrive including 2-lines panel
Contact CG	Handheld Control Panel 2.0 complete for FlowDrive including 4-lines panel

The Handheld Control Panel - HCP 2.0 is a complete control panel, easy to connect to the AC drive, for temporary use when e.g. commissioning, servicing and so on.

The HCP has full functionality including memory. It is possible to set parameters, view signals, actual values, fault logger information and so on. It is also possible to use the memory to copy all data (such as parameter set data and motor data) from one AC drive to the HCP and then load this data to other AC drives

7.4 Gland kits

Gland kits are available for frame sizes B, C and D.
Metal EMC glands are used for motor and brake resistor cables.

Part Number	Current (dimension)	Frame size
$01-4601-21$	$3-6 \mathrm{~A}(\mathrm{M} 16-\mathrm{M} 20)$	
$01-4601-22$	$8-10 \mathrm{~A}(\mathrm{M} 16-\mathrm{M} 25)$	
$01-4601-23$	$13-18 \mathrm{~A}(\mathrm{M} 16-\mathrm{M} 32)$	
$01-4399-01$	$26-31 \mathrm{~A}(\mathrm{M} 12-\mathrm{M} 32)$	C
$01-4399-00$	$37-46 \mathrm{~A}(\mathrm{M} 12-\mathrm{M} 40)$	
$01-4833-00$	$61-74 \mathrm{~A}(\mathrm{M} 20-\mathrm{M} 50)$	D

7.5 EmoSoftCom

EmoSoftCom is an optional software that runs on a personal computer. It can also be used to load parameter settings from the AC drive to the PC for backup and printing.
Recording can be made in oscilloscope mode. Please contact CG Drives \& Automation sales for further information.

7.6 I/O Board

Part number	Description
01-3876-01	I/O option board 2.0 - Coated

Each I/O option board 2.0 provides three extra relay outputs and three extra isolated digital inputs (24 V). The I/O Board works in combination with the Pump/Fan Control, but can also be used as a separate option. Maximum 3 I/O boards possible. This option is described in a separate manual.

7.7 PTC/PT100

Part number	Description
01-3876-08	PTC/PT100 2.0 option board - Coated

The PTC/PT100 2.0 option board for connecting motor thermistors and max 3 PT100 elements to the AC drive is described in a separate manual.

7.8 RTC- Real time clock board

Part number	Description
$01-3876-15$	RTC option board - Coated

With this option board connected, it is possible to see and set actual time, date and weekday. This can be used to start or stop certain functions such as pump cleaning, pipe cleaning or sump cleaning at certain time, date or weekdays.

NOTE: The 4-lines Control panel includes a RTCReal time clock function already and makes this RTC option board unnecessary.

7.9 Serial communication and fieldbus

Part number	Description*
$01-3876-04$	RS232/485
$01-3876-05$	Profibus DP
$01-3876-06$	DeviceNet
$01-3876-09$	Modbus/TCP, Industrial Ethernet
$01-3876-14$	Modbus/TCP, two port M12 Industrial Ethernet
$01-3876-10$	EtherCAT, Industrial Ethernet
$01-3876-11$	Profinet IO, one port Industrial Ethernet
$01-3876-12$	Profinet IO, two port Industrial Ethernet
$01-3876-13$	EtherNet/IP, two port industrial EtherNet

*) Note that all option boards in FlowDrive shall be ordered coated.

For communication with the AC drive there are several option boards for communication. There are different options for Fieldbus communication and one serial communication option with RS232 or RS485 interface which has galvanic isolation.

7.10 Standby power supply

Part no.	AC drive Version	Note
	IP20/21 and IP54/20 frame sizes B - F - Coated	Factory mounted option
01-6070-00	lP2Y frame sizes A3-C3 - Coated	Factory mounted or aftermount option kit.

The standby power supply option provides the possibility of keeping the communication system up and running without having the 3 -phase mains connected. One advantage is that the system can be set up without mains power. The option will also give backup for communication failure if main power is lost.
The standby supply board option shall be supplied with external $24 \mathrm{~V}_{\mathrm{DC}} \pm 10 \%$ protected by a 2 A slow acting fuse, from a double isolated transformer.

7.11 Safe Stop option

To realize a Safe Stop configuration in accordance with Safe Torque Off (STO) EN-IEC 62061:2005 SIL 3 \& EN-ISO 13849-1:2006, the following three parts need to be attended to:

1. Inhibit trigger signals with safety relay K1 (via Safe Stop option board).
2. Enable input and control of AC drive (via normal I/O control signals of AC drive).
3. Power conductor stage (checking status and feedback of driver circuits and IGBT's).
To enable the AC drive to operate and run the motor, the following signals should be active:

- "Inhibit" input, terminals 1 (DC+) and 2 (DC-) on the Safe Stop option board should be made active by connecting $24 \mathrm{~V}_{\mathrm{DC}}$ to secure the supply voltage for the driver circuits of the power conductors via safety relay K1. See also Fig. 107.
- High signal on the digital input, e.g. terminal 10 in Fig. 107, which is set to "Enable". For setting the digital input please refer to section 10.5 .2, page 132.

These two signals need to be combined and used to enable the output of the AC drive and make it possible to activate a Safe Stop condition.

NOTE: The "Safe Stop" condition according to EN-IEC 62061:2005 SIL 3 \& EN-ISO 138491:2006, can only be realized by de-activating both the "Inhibit" and "Enable" inputs.

When the "Safe Stop" condition is achieved by using these two different methods, which are independently controlled,
this safety circuit ensures that the motor will not start running because:

- The 24 VDC signal is disconnected from the "Inhibit" input, terminals 1 and 2, the safety relay K 1 is switched off.

The supply voltage to the driver circuits of the power conductors is switched off. This will inhibit the trigger pulses to the power conductors.

- The trigger pulses from the control board are shut down.

The Enable signal is monitored by the controller circuit which will forward the information to the PWM part on the Control board.

To make sure that the safety relay K1 has been switched off, this should be guarded externally to ensure that this relay did not refuse to act. The Safe Stop option board offers a feedback signal for this via a second forced switched safety relay K2 which is switched on when a detection circuit has confirmed that the supply voltage to the driver circuits is shut down. See Table 34 for the contacts connections.
To monitor the "Enable" function, the selection "RUN" on a digital output can be used. For setting a digital output, e.g. terminal 20 in the example Fig. 107, please refer to section 10.5.4, page 138 [540].

When the "Inhibit" input is de-activated, the AC drive display will show a flashing "SST" indication in section D (bottom left corner) and the red Trip LED on the Control panel will be flashing.

To resume normal operation, the following steps have to be taken:

- Release "Inhibit" input; $24 \mathrm{~V}_{\mathrm{DC}}$ (High) to terminal 1 and 2.
- Give a STOP signal to the AC drive, according to the set Run/Stop Control in menu [215].
- Give a new Run command, according to the set Run/ Stop Control in menu [215].

NOTE: The method of generating a STOP command is dependent on the selections made in Start Signal Level/Edge [21A] and the use of a separate Stop input via digital input.

WARNING!
The safe stop function can never be used for electrical maintenance. For electrical maintenance the AC drive should always be disconnected from the supply voltage.

Fig. 69 Connection of safe stop option in size B.

Fig. 70 Connection of safe stop option in size E and $u p$.

Table 24 Specification of Safe Stop option board

$\begin{aligned} & \text { X1 } \\ & \text { pin } \end{aligned}$	Name	Function	Specification
1	Inhibit +	Inhibit driver circuits of power conductors	$\begin{aligned} & \text { DC } 24 \mathrm{~V} \\ & (20-30 \mathrm{~V}) \end{aligned}$
2	Inhibit -		
3	NO contact relay K2	Feedback; confirmation of activated inhibit	$\begin{aligned} & 48 \mathrm{~V}_{\mathrm{DC}} / \\ & 30 \mathrm{~V}_{\mathrm{AC}} / 2 \mathrm{~A} \end{aligned}$
4	P contact relay K2		
5	GND	Supply ground	
6	+24 VDC	Supply Voltage for operating Inhibit input only.	$\begin{aligned} & +24 \mathrm{~V}_{\mathrm{DC}}, \\ & 50 \mathrm{~mA} \end{aligned}$

Fig. 71 Safe Stop connection

7.12 EMC filter class C1/C2

EMC filter according to EN61800-3:2004 class C1 (for frame size C types) and C2-1st environment restricted distribution.
For sizes B, C, C2, D and D2, the filter is mounted inside the drive module.
For sizes E , external EMC filters are available.
For more information refer to "Technical catalogue for AC drives".
Note: EMC filter according to class C3-2nd environment included as standard in all drive units.

7.13 Output chokes

Output chokes, which are supplied separately, are recommended for lengths of screened motor cable longer than 100 m . Because of the fast switching of the motor voltage and the capacitance of the motor cable (both line to line and line to earth screen), large switching currents can be generated with long lengths of motor cable. Output chokes prevent the AC drive from tripping and should be installed as closely as possible to the AC drive.
See also in "Technical catalogue AC drives" for filter selection guide.

7.14 Liquid cooling

AC drive modules in frame sizes E-O and F69-T69 are available in a liquid cooled version. These units are designed for connection to a liquid cooling system, normally a heat exchanger of liquid-liquid or liquid-air type. Heat exchanger is not part of the liquid cooling option.
Drive units with parallel power modules (frame size G-T69) are delivered with a dividing unit for connection of the cooling liquid. The drive units are equipped with rubber hoses with leak-proof quick couplings.
The Liquid cooling option is described in a separate manual.

7.15 Top cover for IP20/21 version

Part number	Description
$01-5356-00$	Top cover for frame size C2
$01-5355-00$	Top cover for frame sizes D2, E2 and F2

This Top cover can be mounted on IP20 versions of frame sizes C2, D2, E2 and F2.
By mounting the top cover, the protection class will change to IP21 in accordance with EN 60529 standard.

Fig. 72 Optional top cover mounted on frame size D2

7.16 Other options

Following options are also available, for more information regarding these options, see in "Technical catalogue AC drives".

Overshoot clamp
Sine wave filter
Common mode filter
Brake resistors

8. Technical Data

8.1 Electrical specifications related to model

Emotron FLD - IP20/21 version

Table 25 Typical motor power at mains voltage 230, 400 and 460V. AC drive main voltage range 230-480 V.

Model	Max. output current [A]*	Normal duty (120%, 1 min every 10 min)					Frame size
		Rated current [A]	Power @230V [kW]	Power @230V [HP]	Power @400V [kW]	Power @460V [HP]	
FLD48-025-20	30	25	5.5	7.5	11	15	C2
FLD48-030-20	36	30	7.5	10	15	20	
FLD48-036-20	43	36	7.5	10	18.5	25	
FLD48-045-20	54	45	11	15	22	30	
FLD48-058-20	68	58	15	20	30	40	
FLD48-072-20	86	72	18.5	25	37	50	D2
FLD48-088-20	106	88	22	30	45	60	
FLD48-105-20	126	105	30	40	55	75	
FLD48-142-20	170	142	37	50	75	100	E2
FLD48-171-20	205	171	45	60	90	125	
FLD48-205-20	246	205	55	75	110	150	F2
FLD48-244-20	293	244	75	100	132	200	
FLD48-293-20	352	293	90	125	160	250	
FLD48-365-20	438	365	110	150	200	300	FA2

* Available during limited time and as long as allowed by drive temperature.

Emotron FLD - IP54 version

Table 26 Typical motor power at mains voltage 230, 400 and 460 V . AC drive main voltage range 230-480 V.

Model	Max. output current [A]*	Normal duty (120\%, 1 min every 10 min)					Frame size	$\underset{\text { klass }}{\text { IP }}$
		Rated current [A]	Power @230V [kW]	Power @230V [HP]	Power @400V [kW]	Power @460V [HP]		
FLD48-003-54	3.0	2.5	0.37	0.5	0.75	1	B	$\begin{gathered} \text { IP } 54 \\ \text { wall } \\ \text { mounted } \end{gathered}$
FLD48-004-54	4.8	4.0	0.75	1	1.5	2		
FLD48-006-54	7.2	6.0	1.1	1.5	2.2	3		
FLD48-008-54	9.0	7.5	1.5	2	3	3		
FLD48-010-54	11.4	9.5	2.2	3	4	5		
FLD48-013-54	15.6	13.0	2.2	3	5.5	7.5		
FLD48-018-54	21.6	18.0	4	5	7.5	10		
FLD48-026-54	31	26	5.5	7.5	11	15	C	
FLD48-031-54	37	31	7.5	10	15	20		
FLD48-037-54	44	37	7.5	10	18.5	25		
FLD48-046-54	55	46	11	15	22	30		
FLD48-061-54	73	61	15	20	30	40	D	
FLD48-074-54	89	74	18.5	25	37	50		
FLD48-090-54	108	90	22	30	45	60	E	
FLD48-109-54	131	109	30	40	55	75		
FLD48-146-54	175	146	37	50	75	100		
FLD48-175-54	210	175	45	60	90	125		
FLD48-210-54	252	210	55	75	110	150	F	
FLD48-228-54	300	228	55	75	110	200		
FLD48-250-54	300	250	75	100	132	200		
FLD48-295-54	354	295	90	125	160	250		
FLD48-365-54	438	365	110	150	200	300	FA	

* Available during limited time and as long as allowed by drive temperature.

Emotron FLD 2.0 - IP54 version (Model 69-250 and up also available as IP20)

Table 27 Typical motor power at mains voltage 525, 575 and 690 V .
AC drive main voltage range, for 52: 440-525 V and for 69: 500-690 V.

Model	Max. output current [A]*	Normal duty (120\%, 1 min every 10 min)				Frame size	$\begin{aligned} & \text { IP } \\ & \text { class } \end{aligned}$
		Rated current [A]	Power @525V [kW]	Power @575V [HP]	Power @690V [kW]		
FLD52-003-54	3.0	2.5	1.1	-	-	B	IP 54 wall mounted
FLD52-004-54	4.8	4.0	2.2	-	-		
FLD52-006-54	7.2	6.0	3	-	-		
FLD52-008-54	9.0	7.5	4	-	-		
FLD52-010-54	11.4	9.5	5.5	-	-		
FLD52-013-54	15.6	13.0	7.5	-	-		
FLD52-018-54	21.6	18.0	11	-	-		
FLD52-026-54	31	26	15	-	-		
FLD52-031-54	37	31	18.5	-	-		
FLD52-037-54	44	37	22	-	-	C	
FLD52-046-54	55	46	30	-	-		
FLD52-061-54	73	61	37	-	-	D	
FLD52-074-54	89	74	45	-	-	D	
FLD69-090-54	108	90	55	75	90	F69	
FLD69-109-54	131	109	75	100	110		
FLD69-146-54	175	146	90	125	132		
FLD69-175-54	210	175	110	150	160		
FLD69-200-54	240	200	132	200	200		

* Available during limited time and as long as allowed by drive temperature.

8.2 General electrical specifications

Table 28 General electrical specifications

General	
	```230-480V +10%/-15% (-10% at 230 V) 440-525 V +10 %/-15 % 500-690V +10%/-15% 45 to 65 Hz max. }\pm3.0%\mathrm{ of nominal phase to phase input voltage. 0.95 0-Mains supply voltage: 0-400 Hz 3 kHz (adjustable 1,5-6 kHz) 97% for models 003 to 018 98% for models 025 to 3K0```
Control signal inputs: Analogue (differential)	
Analogue Voltage/current:   Max. input voltage:   Input impedance:   Resolution:   Hardware accuracy:   Non-linearity	$\begin{aligned} & 0- \pm 10 \mathrm{~V} / 0-20 \mathrm{~mA} \text { via switch } \\ & +30 \mathrm{~V} / 30 \mathrm{~mA} \\ & 20 \text { kohm (voltage) } \\ & 250 \text { kohm (current) } \\ & 11 \text { bits + sign } \\ & 1 \% \text { type }+1 \text { 1⁄2 LSB fsd } \\ & 1 \text { 1⁄2 LSB } \end{aligned}$
Digital:	
Input voltage:   Max. input voltage: Input impedance:   Signal delay:	$\begin{aligned} & \text { High: >9 VDC, Low: }<4 \text { VDC } \\ & \text { +30 VDC } \\ & <3.3 \text { VDC: } 4.7 \text { kohm } \\ & \geq 3.3 \text { VDC: } 3.6 \text { kohm } \\ & \leq 8 \mathrm{~ms} \end{aligned}$
Control signal outputs Analogue	
Output voltage/current:   Max. output voltage:   Short-circuit current ( $\infty$ ):   Output impedance:   Resolution:   Maximum load impedance for current   Hardware accuracy:   Offset:   Non-linearity:	```0-10 V/0-20 mA via software setting +15 V @5 mA cont. +15 mA (voltage), +140 mA (current) 10 ohm (voltage) 10 bit 500 ohm 1.9% type fsd (voltage), 2.4% type fsd (current) 3 LSB 2 LSB```
Digital	
Output voltage:   Shortcircuit current( $\infty$ ):	High: >20 VDC @50 mA, >23 VDC open Low: <1 VDC @50 mA 100 mA max (together with + 24 VDC)
Relays	
Contacts	0.1-2 A/Umax 250 VAC or 42 VDC (30 VDC acc. to UL requirement) for general Purpose or Resistive use only .
References	
+10VDC   -10VDC   +24VDC	$\begin{aligned} & +10 \mathrm{~V}_{\mathrm{DC}} @ 10 \mathrm{~mA} \text { Short-circuit current }+30 \mathrm{~mA} \text { max } \\ & -10 \mathrm{~V}_{\mathrm{DC}} @ 10 \mathrm{~mA} \\ & +24 \mathrm{~V}_{\mathrm{DC}} \text { Short-circuit current +100 mA max (together with Digital } \\ & \text { Outputs) } \end{aligned}$

### 8.3 Operation at higher temperatures

Most Emotron AC drives are made for operation at maximum of $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ ambient temperature. However, it is possible to use the AC drive at higher temperatures with reduced output rating.

## Possible derating

Derating of output current is possible with $-1 \% /$ degree Celsius to max $+15^{\circ} \mathrm{C}\left(=\max\right.$ temp $\left.55^{\circ} \mathrm{C}\right)$ or $-0.55 \% /$ degree Fahrenheit to max $+27^{\circ} \mathrm{F}$ (= max temp. $131^{\circ} \mathrm{F}$ ).

## Example

In this example we have a motor with the following data that we want to run at the ambient temperature of

$$
45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right):
$$

Voltage $\quad 400 \mathrm{~V}$
Current 72 A
Power $\quad 37 \mathrm{~kW}(50 \mathrm{hp})$

## Select AC drive

The ambient temperature is $5^{\circ} \mathrm{C}\left(9^{\circ} \mathrm{F}\right)$ higher than the maximum ambient temperature. The following calculation is made to select the correct AC drive model.
Derating is possible with loss in performance of $1 \% /{ }^{\circ} \mathrm{C}(0.55 \% /$ degree F$)$.
Derating will be: $5 \times 1 \%=5 \%$
Calculation for model 48-074
$74 \mathrm{~A}-(5 \% \times 74)=70.3 \mathrm{~A}$; this is not enough.
Calculation for model 48-090
$90 \mathrm{~A}-(5 \% \times 90)=85.5 \mathrm{~A}$
In this example we select the 48-090.

### 8.4 Operation at higher switching frequency

Table 29 shows the switching frequency for the different AC drive models. With the possibility of running at higher switching frequency you can reduce the noise level from the motor. The switching frequency is set in menu [22A], Motor sound, see software instruction. At switching frequencies $>3 \mathrm{kHz}$ derating might be needed.

## Table 29 Switching frequency

Models	Standard   Switching   frequency	Range
FLD\#\#-003 to FLD\#\#-295	3 kHz	$1.5-6 \mathrm{kHz}$
FLD\#\#-293, -295 and -365	2 kHz	

### 8.5 Dimensions and Weights

The table below gives an overview of the dimensions and weights. The models 003 to 295 and 365 are available in IP54 as wall mounted modules.
Protection class IP54 is according to the EN 60529 standard.

Table 30 Mechanical specifications, 48, 52

Models	Frame size	IP54   Dim. H x W x D mm (in)	IP54   Weight   kg (lb)
003 to 018	B	$350 / 416 \times 203 \times 200(13.8 / 16.4 \times 8 \times 7.9)$	12.5 (27.6)
026 to 046	C	440/512 $\times 178 \times 292(17.3 / 20.2 \times 7 \times 11.5)$	24 (52.9)
061 to 074	D	$545 / 590 \times 220 \times 295(21.5 / 23.2 \times 8.7 \times 11.5)$	32 (70.6)
90 to 109	E	$950 \times 285 \times 314(37.4 \times 11.2 \times 12.4)$	56 (123.5)
146 to 175	E	$950 \times 285 \times 314(37.4 \times 11.2 \times 12.4)$	60 (132.3)
210 to 295	F	$950 \times 345 \times 314(37.4 \times 13.6 \times 12.4)$	75 (165.4)
365	FA	$950 \times 345 \times 314(37.4 \times 13.6 \times 12.4)$	103.5 (227)

Table 31 Mechanical specifications, 69

Models	Frame size	IP54   $\mathbf{D i m . \mathbf { H ~ X ~ W ~ X ~ D ~ }}$   $\mathbf{m m}$ (in)	Weight IP54   $\mathbf{k g}(\mathbf{I b})$
90 to 200	F69	$1090 \times 345 \times 314(42.9 \times 13.6 \times 12.4)$	$77(169.8)$

## Dimensions and weights for models Emotron 48 - IP20/21 version

The table below gives an overview of the dimensions and weights of the Emotron IP20/21 version.
These AC drives are available as wall mounted modules; The IP20 version is optimised for cabinet mounting. With the optional top cover, protection class is in compliance with IP21, making it suitable for mounting directly on the electrical room wall.

The protection classes IP20 and IP21 are defined according to the EN 60529 standard.

Table 32 Mechanical specifications, 48-IP20 and IP21 version

Models	Frame size	$\begin{gathered} \text { IP2O } \\ \text { Dim. H1/H2 } \times \mathrm{W} \times \mathrm{D} \\ \mathrm{~mm}(\mathrm{in}) \end{gathered}$	$\begin{gathered} \text { IP21* } \\ \text { Dim. H1/H2 } \times \mathrm{W} \times \mathrm{D} \\ \mathrm{~mm}(\mathrm{in}) \end{gathered}$	IP20/21 Weight kg (lb)
025 to 058	C2	$\begin{gathered} 438 / 536 \times 176 \times 267 \\ (17.2 / 21.1 \times 6.9 \times 10.5) \end{gathered}$	$\begin{aligned} & 438 / 559 \times 196 \times 282 \\ & (17.2 / 22 \times 7.7 \times 11.1) \end{aligned}$	17 (37.5)
072 to 105	D2	$\begin{aligned} & 545 / 658 \times 220 \times 291 \\ & (21.5 / 25.9 \times 8.7 \times 11.5) \end{aligned}$	$\begin{gathered} 545 / 670 \times 240 \times 307 \\ (21.5 / 26.4 \times 9.5 \times 12.1) \end{gathered}$	30 (66)
142 to 171	E2	$\begin{gathered} 956 / 956 \times 275 \times 294 \\ (37.6 / 37.6 \times 10.8 \times 11.6) \end{gathered}$	$\begin{gathered} 956 / 956 \times 275 \times 323 \\ (37.6 / 37.6 \times 10.8 \times 12.7) \end{gathered}$	53 (117)
205 to 293	F2	$\begin{gathered} 956 / 956 \times 335 \times 294 \\ (37.6 / 37.6 \times 13.2 \times 11.6) \end{gathered}$	$\begin{gathered} 956 / 956 \times 335 \times 323 \\ (37.6 / 37.6 \times 13.2 \times 12.7) \end{gathered}$	68 (150)
365	FA2	$\begin{aligned} & 956 / 1121 \times 335 \times 306 \\ & (37.6 / 44.1 \times 13.2 \times 12.1) \end{aligned}$	-	103.5 (227)

$\mathrm{H} 1=$ Enclosure height.
$\mathrm{H} 2=$ Total height including cable interface.

* with optional top cover


### 8.6 Environmental conditions

Table 33 Operation

Parameter	Normal operation
Nominal ambient temperature	$0^{\circ} \mathrm{C}-40{ }^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}-104{ }^{\circ} \mathrm{F}\right)$ See table, see chapter 8.3 page 63 for different conditions
Atmospheric pressure	86-106 kPa (12.5-15.4 PSI)
Relative humidity according to IEC 60721-3-3	Class 3K4, 5...95\% and non condensing
Contamination, according to IEC 60721-3-3	No electrically conductive dust allowed. Cooling air must be clean and free from corrosive materials. Chemical gases, class 3C2. Solid particles, class 3S2.
Vibrations	According to IEC 600068-2-6, Sinusodial vibrations:   $10<\mathrm{f}<57 \mathrm{~Hz}, 0.075 \mathrm{~mm}(0.00295 \mathrm{ft})$   $57<f<150 \mathrm{~Hz}, 1 \mathrm{~g}(0,035 \mathrm{oz})$
Altitude	0-1000 m (0-3280 ft)   480 V AC drives, with derating $1 \% / 100 \mathrm{~m}(328 \mathrm{ft})$ of rated current up to 4000 m ( 13123 ft ) 690V AC drives, with derating $1 \% / 100 \mathrm{~m}(328 \mathrm{ft})$ of rated current up to 2000 m (6562) ft Coated boards required for 2000-4000 m(6562-13123 ft)

Table 34 Storage

Parameter	Storage condition
Temperature	-20 to $+60^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+140{ }^{\circ} \mathrm{F}\right)$
Atmospheric pressure	$86-106 \mathrm{kPa}(12.5-15.4 \mathrm{PSI})$
Relative humidity   according to IEC $60721-3-1$	Class 1 K 4, max. $95 \%$ and non condensing and no formation of ice.

### 8.7 Fuses and glands

### 8.7.1 According to IEC ratings

Use mains fuses of the type $\mathrm{gL} / \mathrm{gG}$ conforming to IEC 269 or breakers with similar characteristics. Check the equipment first before installing the glands.
Max. Fuse = maximum fuse value that still protects the AC drive and upholds warranty.

NOTE: The dimensions of fuse and cable cross-section are dependent on the application and must be determined in accordance with local regulations.

NOTE: The dimensions of the power terminals used in the cabinet drive models $\mathbf{3 0 0}$ to $\mathbf{3 K O}$ can differ depending on customer specification.

Table 35 Fuses, cable cross-sections and glands

Model	Nominal input current   [A]	Maximum value fuse   [A]	Cable glands (clamping range) *	
			mains / motor	Brake
\#\#-003	2.2	4	M32 openingM20 + reducer$(6-12 \mathrm{~mm}(0.24-0.47 \mathrm{in}))$	M25 openingM20 + reducer$(6-12 \mathrm{~mm}(0.24-0.47 \mathrm{in}))$
\#\#-004	3.5	4		
\#\#-006	5.2	6		
\#\#-008	6.9	10	M32 (12-20)/M32 opening M25+reducer (10-14 mm(0.39-0.55 in))	$\begin{gathered} \mathrm{M} 25 \\ (10-14 \mathrm{~mm}(0.39-0.55 \mathrm{in})) \end{gathered}$
\#\#-010	8.7	10		
\#\#-013	11.3	16	M32 (16-25)/M32 (13-18)	
\#\#-018	15.6	20		
\#\#-025	22	25	- $(12-16 \mathrm{~mm}(0.55-0.63 \mathrm{in})$ )	
\#\#-026	22	25	$\begin{gathered} \text { M32 } \\ (15-21 \mathrm{~mm}(0.59-0.83 \mathrm{in})) \end{gathered}$	M25
\#\#-030	26	35	- (16-20 mm (0.63-0.79 in))	
\#\#-031	26	35	$\begin{gathered} \hline \text { M32 } \\ (15-21 \mathrm{~mm}(0.59-0.83 \mathrm{in})) \end{gathered}$	M25
\#\#-036	31	35	- (20-24 mm(0.79-0.94))	
\#\#-037	31	35	$\begin{gathered} \text { M40 } \\ (19-28 \mathrm{~mm}(0.75-1.1 \mathrm{in})) \end{gathered}$	M32
\#\#-045	38	50	- $(24-28 \mathrm{~mm}(0.94-1.1 \mathrm{in})$ )	
\#\#-046	38	50	$\begin{gathered} \text { M40 } \\ (19-28 \mathrm{~mm}(0.75-1.1 \mathrm{in})) \end{gathered}$	M32
\#\#-058	50	63	- (24-28 mm(0.94-1.1 in))	
\#\#-061	52	63	M50 $(27-35 \mathrm{~mm}(1.06-1.38 \mathrm{in}))$	$\begin{gathered} \text { M40 } \\ (19-28 \mathrm{~mm}(0.75-1.1 \mathrm{in})) \end{gathered}$
\#\#-072	64	80	- (28-32 mm(1.1-1.26 in))	
\#\#-074	65	80	M50 $(27-35 \mathrm{~mm}(1.06-1.38 \mathrm{in}))$	M40 $(19-28 \mathrm{~mm}(0.75-1.1 \mathrm{in}))$
\#\#-088	78	100	- (32-36mm(1.26-1.42 in))	
\#\#-090	78	100	48: ( $817-42 \mathrm{~mm}(0.67-1.65 \mathrm{in}))$ cable flexible leadthrough or M50 opening.   69: (Ø23-55 mm (0.9-2.16 in)) Cable flexible leadthrough or M63 opening.	48: ( $811-32 \mathrm{~mm}(0.43-1.26 \mathrm{in})$ ) Cable flexible leadthrough or M40 opening.   69: ( $017-42 \mathrm{~mm}$ (0.67-1.65 in)) Cable flexible leadthrough or M50 opening.
\#\#-105	91	100	- (32-36mm(1.26-1.42 in))	
\#\#-109	94	100	48: ( $017-42 \mathrm{~mm}(0.67-1.65 \mathrm{in}))$ cable flexible leadthrough or M50 opening.   69: (Ø23-55 mm (0.9-2.16 in)) Cable flexible leadthrough or M63 opening.	48: (011-32 mm(0.43-1.26 in)) Cable flexible leadthrough or M40 opening.   69: ( $017-42 \mathrm{~mm}(0.67-1.65 \mathrm{in}))$ Cable flexible leadthrough or M50 opening.
\#\#-142	126	160	- (40-44 mm (1.57-1.73 in))	- (36-40 mm(1.42-1.57 in))

Table 35 Fuses, cable cross-sections and glands

Model	Nominal input current   [A]	Maximum value fuse   [A]	Cable glands (clamping range ) *	
			mains / motor	Brake
\#\#-146	126	160	48: (Ø17-42 mm (0.67-1.65 in)) cable flexible leadthrough or M50 opening.   69: (Ø23-55 mm (0.9-2.16 in)) Cable flexible leadthrough or M63 opening.	48: ( (ర11-32 mm(0.43-1.26 in)) Cable flexible leadthrough or M40 opening.   69: ( $017-42 \mathrm{~mm}(0.67-1.65 \mathrm{in})$ ) Cable flexible leadthrough or M50 opening.
\#\#-171	152	160	- (40-44 mm (1.57-1.73 in))	- (36-40 mm(1.42-1.57 in))
\#\#-175	152	160	48: ( $017-42 \mathrm{~mm}(0.67-1.65 \mathrm{in}))$ cable flexible leadthrough or M50 opening.   69: (Ø23-55 mm (0.9-2.16 in)) Cable flexible leadthrough or M63 opening.	48: ( $(11-32 \mathrm{~mm}(0.43-1.26 \mathrm{in})$ ) Cable flexible leadthrough or M40 opening.   69: ( $017-42 \mathrm{~mm}(0.67-1.65 \mathrm{in})$ ) Cable flexible leadthrough or M50 opening.
\#\#-205	178	200	$\begin{gathered} -(48-52 \mathrm{~mm}(1.89-2.05 \mathrm{in}) / 52- \\ 56 \mathrm{~mm}(2.05-2.2 \mathrm{in})) \end{gathered}$	- (44-48 mm (1.73-1.89 in))
\#\#-210	182	200	( $623-55 \mathrm{~mm}$ (0.9-2.16 in))	(017-42 mm (0.67-1.65 in))
\#\#-228	197	250	cable flexible leadthrough or M63 opening.	cable flexible leadthrough or M50 opening.
\#\#-244	211	250	$\begin{gathered} -(48-52 \mathrm{~mm}(1.89-2.05 \mathrm{in}) / 52- \\ 56 \mathrm{~mm}(2.05-2.2 \mathrm{in})) \end{gathered}$	- (44-48 mm (1.73-1.89 in))
\#\#-250	216	250	Ø(23-55 mm (0.9-2.16 in))	Ø(23-55mm (0.9-2.16 in))
\#\#-295	256	300	cable flexible leadthrough or M63 opening.	cable flexible leadthrough or M63 opening.
\#\#-293	254	300	$\begin{gathered} -(48-52 \mathrm{~mm}(1.89-2.05 \mathrm{in}) / 52- \\ 56 \mathrm{~mm}(2.05-2.2 \mathrm{in})) \end{gathered}$	- (44-48 mm (1.73-1.89 in))
\#\#-365	324	355	Ø(23-55 mm (0.9-2.16 in)) cable flexible leadthrough or M63 opening.	Ø(23-55mm (0.9-2.16 in)) cable flexible leadthrough or M63 opening.

Note: For IP54 models 003 to 074 cable glands are optional.

* IP20/21 models are equipped with cable clamps instead of glands.
For data on cable connection ranges, see section 3.4.3, page 22


### 8.7.2 Fuses according to NEMA ratings

Table 36 Types and fuses

Model	Input current   [Arms]	Mains input fuses	
		UL Class J TD (A)	FerrazShawmut type
48-003	2.2	6	AJT6
48-004	3.5	6	AJT6
48-006	5.2	6	AJT6
48-008	6.9	10	AJT10
48-010	8.7	10	AJT10
48-013	11.3	15	AJT15
48-018	15.6	20	AJT20
48-025	21.7	25	AJT25
48-026	22	25	AJT25
48-030	26	30	AJT30
48-031	26	30	AJT30
48-036	31	35	AJT35
48-037	31	35	AJT35
48-045	39	45	AJT45
48-046	40	45	AJT45
48-058	50	60	AJT60
48-061	52	60	AJT60
48-072	64	80	AJT80
48-074	65	80	AJT80
48-088	78	100	AJT100
48-090	78	100	AJT100
48-105	91	110	AJT110
48-109	94	110	AJT110
48-142	126	125	AJT150
48-146	126	150	AJT150
48-171	152	175	AJT175
48-175	152	175	AJT175
48-205	178	200	AJT200
48-210	182	200	AJT200
48-228	197	250	AJT250
48-244	211	250	AJT250
48-250	216	250	AJT250
48-293	254	300	ATJ300
48-295	256	300	AJT300
48-365	324	350	AJT350

### 8.8 Control signals

Table 37

$\begin{gathered} \text { Terminal } \\ \text { X1 } \end{gathered}$	Name:	Function (Default):	Signal:	Type:
1	+10 V	+10 VDC Supply voltage	+10 VDC, max 10 mA	output
2	Anln1	Level sensor	$\begin{aligned} & 0-10 \text { VDC or 0/4-20 mA } \\ & \text { bipolar: }-10-+10 \text { VDC or }-20-+20 \\ & \mathrm{~mA} \end{aligned}$	analogue input
3	Anln2	Off	$\begin{aligned} & 0-10 \text { VDC or 0/4-20 mA } \\ & \text { bipolar: }-10-+10 \text { VDC or }-20-+20 \\ & \mathrm{~mA} \end{aligned}$	analogue input
4	Anln3	Off	$\begin{aligned} & 0-10 \text { VDC or 0/4-20 mA } \\ & \text { bipolar: }-10-+10 \text { VDC or }-20-+20 \\ & \mathrm{~mA} \end{aligned}$	analogue input
5	Anln4	Off	$\begin{aligned} & 0-10 \text { VDC or 0/4-20 mA } \\ & \text { bipolar: }-10-+10 \text { VDC or }-20-+20 \\ & \mathrm{~mA} \end{aligned}$	analogue input
6	-10 V	-10VDC Supply voltage	-10 VDC, max 10 mA	output
7	Common	Signal ground	OV	output
8	Digln 1	Forced run	0-8/24 VDC	digital input
9	Digln 2	Auto run	0-8/24 VDC	digital input
10	Digln 3	FlowLinkln	0-8/24 VDC	digital input
11	+24 V	+24VDC Supply voltage	+24 VDC, 100 mA	output
12	Common	Signal ground	0 V	output
13	AnOut 1	Min speed to max speed	$0 \pm 10 \mathrm{VDC}$ or $0 / 4-+20 \mathrm{~mA}$	analogue output
14	AnOut 2	0 to max torque	$0 \pm 10 \mathrm{VDC}$ or $0 / 4-+20 \mathrm{~mA}$	analogue output
15	Common	Signal ground	0 V	output
16	Digln 4	Off	0-8/24 VDC	digital input
17	Digln 5	Off	0-8/24 VDC	digital input
18	Digln 6	Overflow level switch (optional)	0-8/24 VDC	digital input
19	Digln 7	Off	0-8/24 VDC	digital input
20	DigOut 1	Ready	24 VDC, 100 mA	digital output
21	DigOut 2	FlowLinkOut	24 VDC, 100 mA	digital output
22	Digln 8	Reset	0-8/24 VDC	digital input
Terminal X2				
31	N/C 1	Relay 1 output Trip, active when the AC drive is in a TRIP condition $N / C$ is opened when the relay is active (valid for all relays) N/O is closed when the relay is active (valid for all relays)	potential free change over$\begin{aligned} & 0.1-2 \text { A } \\ & U_{\max }=250 \mathrm{VAC} \text { or } 42 \mathrm{VDC} \end{aligned}$	relay output
32	COM 1			
33	N/O 1			
41	N/C 2	Relay 2 Output Run, active when the AC drive is started, also active during sleep mode.	potential free change over$\begin{aligned} & 0.1-2 \mathrm{~A} \\ & \mathrm{U}_{\max }=250 \mathrm{VAC} \text { or } 42 \mathrm{VDC} \end{aligned}$	relay output
42	COM 2			
43	N/O 2			
Terminal X3				
51	COM 3	Relay 3 Output Off	potential free change over $0.1-2 \mathrm{~A}$   $\mathrm{U}_{\max }=250 \mathrm{VAC}$ or 42 VDC	relay output
52	N/O 3			

NOTE: Possible potentiometer value in range of $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ ( $1 / 4$ Watt) linear, where we advice to use a linear $1 \mathbf{k} \Omega / 1 / 4 \mathbf{W}$ type potentiometer for best control linearity.

## 9. Menu List

On our home page in the download area, you could find a "Communication information" list and a list to note Parameter set information.

Some menus are marked with grey, see below, these menus are so called "Advanced menus":

3A24	BEP start	No		

To access the advanced menus, press s.end antons simultaneously for 3 seconds. It is also possible to go to menu "[21E] MenuMode" and select FLD Advanced.


				Factory setting	Customer
	265	Ethernet			
		2651	IP Address	0.0.0.0	
		2652	MAC Address	000000000000	
		2653	Subnet Mask	0.0.0.0	
		2654	Gateway	0.0.0.0	
		2655	DHCP	Off	
	266	FB Signal			
		2661	FB Signal 1	0	
		2662	FB Signal 2	0	
		2663	FB Signal 3	0	
		2664	FB Signal 4	0	
		2665	FB Signal 5	0	
		2666	FB Signal 6	0	
		2667	FB Signal 7	0	
		2668	FB Signal 8	0	
		2669	FB Signal 9	0	
		266A	FB Signal 10	0	
		266B	FB Signal 11	0	
		266C	FB Signal 12	0	
		266D	FB Signal 13	0	
		266E	FB Signal 14	0	
		266F	FB Signal 15	0	
		266G	FB Signal 16	0	
	269	FB Status			
300	Process				
	Level Ctrl				
	3A1	Mode config			
		3A11	Drive conf.	Stand alone	
		3A12	Start Sel.	Run time	
		3A13	Empty time	240min	
		3A14	RnTimeOFsw	Omin	
		Level config			
	3 A 2	3A21	Overflow	0	
		3A22	Start Level	0	
		3A23	Stop Level	0	
		3A24	BEP start	0	
		3A25	BEP stop	0	
		3A26	PreOverFlow	0	
		3A27	Full speed	0	
	3A3	Sump Geometry			
		3A31	Level 1	0	
		3A32	Area 1	Off	
		3 333	Level 2	0	
		3A34	Area 2	Off	
		3A35	Level 3	0	
		3A36	Area 3	Off	
		3 337	Level 4	0	
		3A38	Area 4	Off	
		3A39	Level 5	0	
		3АЗA	Area 5	Off	
	3A4	Autotune			
		3A41	Start AutoT	Off	
		3A42	LoadMonTune	Yes	
		3A43	BEP samples	5	
		3A44	BEP step	2 Hz	
		3A45	MeasType	Off	


				Factory setting	Customer
$3 \mathrm{B0}$ Function    3 B 1               3 B 2    3 B 3		ions			
		Flush start			
		3B11	Flush time	10s	
		3B12	Flush speed	50 Hz	
		Start lvi $\Delta$		Off	
		PumpCleaning			
		3B31	Act.PumpCIn	No	
		3B32	ForcePumpCl	Off	
		3B33	PumpCperiod	Off	
		3B34	Rev. speed	50 Hz	
		3B35	ReverseTime	10s	
		3B36	CleanTorque	Off	
		3B37	Attempts	3	
		3B3A	PC interval	Off	
		3B3B	PCstartDate	2015-01-01	
		3B3C	PCstartTime	Off	
3B4		SumpCleaning			
		3B41	Act.SumpCIn	Off	
		3B42	ForceSumpCl	No	
		3B43	Off Torque $\triangle$	50\%	
		3B44	Timeout	10 min	
		3B45	SumpCPeriod	Off	
		3B4A	Recurlnterv	Odays	
		3B4B	SCstartDate	2015-01-01	
		3B4C	SCstartTime	00:00:00	
3B5		PipeCleaning			
		3B51	ForcePipeC	No	
		3B52	PipeCperiod	Off	
	3B6	LoadMonitor			
		3B61	LoadMonTune	Not Done	
	3B7	Reduced level			
		3B71	Reduction	25\%	
		3B71	Time	Off	
3 CO					
	3C1 $\quad$ Level sensor				
		3C11	Level Unit	m	
		3C12	User unit	0	
		3C13	Sensor min	0	
		3C14	Sensor max	10	
		3C15	Ratio	Linear	
		3C16	Source	Local	
	3C2	Flow sensor			
		3C21	Flow Unit	Off	
		3C23	Flow Min	0	
		3C24	Flow Max	1000	
		3C25	Ratio	Linear	
		3C26	Source	Local	
330	Start/Stop				
	331	Acc Time		4s	
	332	Dec Time		4s	
	335	Acc>Min Spd		4s	
	336	Dec<Min Spd		4s	
	337	Acc Rmp		Linear	
	338	Dec Rmp		Linear	
	339	Start Mode		Fast	






				Factory setting	Customer
		8117	Output volt		
		8118	Frequency		
		8119	DC Voltage		
		811A	IGBT Tmp		
		811B	PT100 1,2,3		
	812	Speed			
		8121	VSD Status		
		8123	Warning P2		
		8124	DiginStatus		
		8125	DigOutStat		
		8126	Anln 12		
		8127	Anln 34		
		8128	AnOut1 2		
		8129	IO StatusB1		
		812A	IO StatusB2		
		812B	IO StatusB3		
	813	Stored Val			
		8131	P1 Run Time		
		8132	Mains Time		
		8133	Energy P1		
		8134	Pstarts tot		
		8135	Pump starts		
		8136	Time		
		8137	Date		
	814	Flow Status			
		8141	Sump level		
		8142	Pump mode		
		8143	Flow state		
		8144	BEP state		
820	Trip Message 821-8244(log list 2)				
830	Trip Message 831-8344 (log list 3)				
840	Trip Message 841-8444 (log list 4)				
850	Trip Message 851-8544 (log list 5)				
860	Trip Message 861-8644 (log list 6)				
870	Trip Message 871-8744 (log list 7)				
880	Trip Message 881-8844 (log list 8)				
890	Trip Message 891-8944 (log list 9)				
8A0	Reset Trip L			No	
System Data					
920	VSD Data				
	921	VSD Type			
	922	Software			
		9221	Build Info		
		9222	Build ID		
	923	Unit	ame	0	
	924	Blueto	oth ID		
930	Clock				
	931	Time		00:00:00	
	932	Date		13-01-01	
	933	Weekday		Monday	
940	Flow log 1P				
	941	Valid points		0	
	942	Freq: XX.x Hz			
		9421	Outflow	Olit/s	
		9422	Flow energy	OWh	
		9423	DataMeasured	0	


		Factory setting	Customer
943	Freq: XX.x Hz + submenus 9431-9433		
944	Freq: XX.x Hz + submenus 9441-9443		
945	Freq: XX.x Hz + submenus 9451-9453		
946	Freq: XX.x Hz + submenus 9461-9463		
947	Freq: XX.x Hz + submenus 9471-9473		
948	Freq: XX.x Hz + submenus 9481-9483		
949	Freq: XX.x Hz + submenus 9491-9493		
94A	Freq: XX.x Hz + submenus 94A1-94A3		
94B	Freq: XX.x Hz + submenus 94B1-94B3		
94C	Freq: XX.x Hz + submenus 94C1-94C3		
94D	Freq: XX.x Hz + submenus 94D1-94D3		
94E	Freq: XX.x Hz + submenus 94E1-94E3		
94F	Freq: XX. $\times$ Hz + submenus 94F1-94F3		
94G	Freq: XX. $\times$ Hz + submenus 94G1-94G3		
94H	Freq: XX.x Hz + submenus 94H1-94H3		
941	Freq: XX.x Hz + submenus 9411-9413		
94J	Freq: XX. $\mathrm{xHz}+$ submenus 94J1-94J3		
94K	Freq: XX.x Hz + submenus 94K1-94K3		
Flow log 2P			
951	Valid points	0	
952-95K same menus as 943-94K for Pump 2			
Reset			
991	Reset Energy	No	
992	Savings	No	
993	Reset Volume	No	
994	Reset starts	No	
995	Daily Reset	No	
996	Overflow	No	
997	Reset runtime	No	


[^0]:    Alarms
    Never disregard an alarm. Always check and remedy the cause of an alarm.

[^1]:    ** $=$ Valid when brake chopper electronics are built in.

